

POW-R-JAC™ ENGINEERED SOLUTIONS

UC-107A

(800) 323-9114 www.tkunilift.com

ONFIGU RATO

NEED A QUICK & EASY WAY TO SOLVE YOUR JACK PROBLEMS? LET THE UNI-LIFT CONFIGURATOR DO THE WORK FOR YOU!

A VIRTUAL ONLINE ENGINEER

The Uni-Lift Configurator walks you through a step by step process to properly select the type, ratio, and size of the machine or ball screw jack for your application. The Uni-Lift Configurator calculates the torque and horsepower requirements for all your system needs.

The Uni-Lift Configurator will:

- Quickly optimize your jack and system requirements with easy to answer questions.
- Save hours of time performing manual calculations.
- Immediately print a top level drawing and configuration report to present to your customer.
- · Allow you to download scaled 2D and 3D drawings from the Configurator.
- Email drawings and technical specifications to your customer eliminating any confusion with the jack design.
- · Support imperial and metric units for global application use.
- · Allow you to submit your design to Uni-Lift via the web for quotation.

www.tkunilift.com

TO ACCESS THE CONFIGURATOR FROM THE UNI-LIFT WEBISTE

- 1. FROM THE UNI-LIFT HOME PAGE CLICK ON THE CONFIGURATOR LINK.
- 2. FIRST TIME USERS MUST REGISTER WITH USER NAME AND PASSWORD.
- 3. AN EMAIL CONFIRMING YOUR VALID REGISTRATION WILL BE SENT
- WITH A LINK TO THE CONFIGURATOR FOR NEWLY REGISTERED USERS.
- YOU CAN ACCESS A CONFIGURATOR TUTORIAL FROM THE UNI-LIFT HOME PAGE AT www.tkunilift.com.

CONFIGURATOR

EASY TO USE GRAPHIC INTERFACE

to answer questions and graphical interface replaces the solving of complicated formulas to configure your jacking system.

GLOSSARY OF TERMS

LINK TO CONFIGURATOR

UNI-LIFT

Simply click any underlined word for a detailed explanation of the topic. A complete glossary of terms is available throughout the configuration process.

Email or

Click the Configurator link from the home page to access the log-in screen.

DOWNLOADABLE DRAWINGS

download scaled 2D (DXF) and 3D (STEP) CAD files for insertion into your customer's drawings.

2525 Gardner Road Broadview, IL 60155 TEL: (800) 523-9114 (USA only) (708) 865-8500 (Outside USA) FAX: (708) 865-0894

INTRODUCTION

UNI-LIFT TABLE OF CONTENTS

Uni-Lift Configurator	2-3
Uni-Lift Lifetime Warranty	4
Design Configurations	5
FAQ's	6-8
Products in Action	9

M-SERIES MACHINE SCREW

Introductio	n	10-11
Sizing Calc	ulation Guide	12-14
Column Bu	ckle Chart	15
M-1	1 ton actuator	16
M-2.5	2.5 ton actuator	17
M-5	5 ton actuator	18
M-10	10 ton actuator	19
M-15	15 ton actuator	20
M-20	20 ton actuator	21
M-30	30 ton actuator	22
M-50	50 ton actuator	23
M-75	75 ton actuator	24
M-100	100 ton actuator	25
M-150	150 ton actuator	26
M-250	250 ton actuator	27

A-SERIES MACHINE SCREW ANTI-BACKLASH ACTUATOR

Features & Benefits Anti-Backlash Design Specifications

J-SERIES MACHINE SCREW ACTUATOR

Introduction 30-3						
Sizing Calcu	ulation Guide	32-34				
Column Bud	ckle Chart	35				
H-1/4	500 pound actuator	36				
H-1/2	1000 pound actuator	37				
J-3/4	1500 pound actuator	38				
J-1	1 ton actuator	39				
J-2	2 ton actuator	40				
J-5	5 ton actuator	41				
J-10	10 ton actuator	42				
J-20	20 ton actuator	43				
J-25	25 ton actuator	44				
J-40	40 ton actuator	45				

B-SERIES BALL SCREW ACTUATOR

ACIUAI		
Introduction Sizing Calculatio Column Buckle (B-1 B-2.5 B-5 B-10 B-20 B-30 B-50 B-75 B-100	n Guide Chart 1 ton actuator 2 1/2 ton actuator 5 ton actuator 10 ton actuator 20 ton actuator 30 ton actuator 50 ton actuator 75 ton actuator 100 ton actuator	46 47-49 50 51 52 53 54 55 56 57 58 59
DOUBLE	CLEVIS	
Dimensions Column Buckle (Chart	60 61
MOTOR Dimensions Specifications	IZED ACTUATO	62 63
SYSTEN Motors Motor Adaptors Limit Switches Worm Gear Red Mitre Gear Boxe Couplings Boots	ACCESSORIES	64 65 66 67 68-69 70 71-72
ENGINE	ERING GUIDE	
Shafting System Arrange Load Screw Key Safety & Installa Lubrication & N Selection Inforn Actuator Part Ne	ement 7 Torque ation laintenance nation Guide umber Matrix	73 74 75 76 77 78 79

All Uni-Lift Product dimensions and specifications are subject to change without notice. All product drawings are not to scale. Please consult your Uni-Lift Representative for verification of critical dimensions & specifications, or call 1-(800) 323-9114.

UNI-LIFT "LIFETIME" WARRANTY

All Uni-Lift Products are under warranty against defects in material and workmanship. Any Uni-Lift Product proven defective will be repaired or replaced at no charge. Contact your authorized Uni-Lift Service Center or call 1-(800)-323-9114.

28 29

© Copyright 2005 by Uni-Lift Division of Templeton, Kenly & Co., Inc., Broadview, IL 60155.

LINEAR MOTION DESIGN CONFIGURATIONS

INTRODUCTION

MACHINE SCREW

CONFIGURATIONS

800-323-9114

Standard Design (Translating Screw)

For standard design units, the load screw translates through the unit to push or pull when the screw is fixed to the load and is externally restricted to prevent rotation. To determine motor sizes, input torques and column strength, see the system design calculations in the System Design section.

Rotating Design (Traveling Nut)

The load screw of a rotating design unit is fixed to the worm gear, causing the screw to rotate. A flanged nut travels along the load screw to push or pull the load. The load must be fixed to the traveling nut and restricted from rotation in order to produce linear motion.

The plain end and traveling nut are pre-assembled on these units. The plain end is designed to fit a standard pillow block bearing to provide support and alignment for the rotating load screw.

Keyed Design

In applications where rotation cannot be prevented externally, the keyed design jack should be used. These Uni-Lifts are keyed internally to prevent rotation of the screw to produce linear motion.

NOTE: For keyed applications where operating loads are expected to exceed 25% of rated capacity, contact factory for technical assistance. Contact the factory for recommendations where long travels or high screw velocities are required.

INTRODUCTION

UNI-LIFT. FREQUENTLY ASKED QUESTIONS

Frequently Asked Questions (FAQ's) about Uni-Lift Actuators:

What is the difference The machine screw actuator uses an acme threaded screw that is typically self-1. locking, meaning it will hold its position without a brake. Ball screw actuators between a Machine Screw use ball screws to convert rotary motion to linear movement, and require 1/3 Actuator and a Ball Screw the horsepower compared to a machine screw actuator. Due to the efficiency of Actuator? the ball screw, brakes must be used to stop and hold the load screw in position. Brakes are also recommended for use on any actuator if vibration is present. 2. Why use a machine screw One type of actuator is usually better suited to the operating conditions. vs. a ball screw actuator? Typically, fast operating speeds and frequent cycle times may be more suited to a ball screw actuator, particularly as the load approaches the rated capacity of the actuator. High load at slower speeds, less frequent cycles and the ability to hold the load in position when the system is at rest may be better suited for a machine screw actuator. The input torgue for a specific load and actuator model is calculated using the 3. What is the input torque technical specifications and formulas in the catalog. The input torque (inch requirement for a given pounds) is listed for each actuator model in the Technical Specifications Section output load? titled "Torque Required to Lift One Pound". 4. How do I operate the Most actuators are operated by electric motor, but air motors and hydraulic actuator? motors can also be used. Handwheels can be used for manual operation. 5. How do I size motors and The horsepower requirement for Uni-Lift is calculated using the actuator input calculate required torque to move the load times the input RPM to the actuator divided by the horsepower? constant of 63025. 6. Can I use a larger motor Yes, but it is not recommended. The actuator or system components could be damaged if an oversize motor is used. Electronic position switches or travel than required? limit controls must be used for each end of travel to stop the motor. If using solid mechanical stops, actuator components can be subject to shock load conditions and oversize motors can cause catastrophic failure of stops and other components. What is TPI? TPI stands for turns per inch and is listed in the Technical Specifications for 7. each actuator model. The value associated with TPI is the number of revolutions required to the input shaft to move the load one inch. This is calculated by dividing the actuator ratio by the lead of the load screw. Limit switches or other controls must be used to shut off the motor when the How do I stop the actuator at 8. actuator has reached its full extended or retracted position. Solid stops are not the travel limits? recommended. Their continued use can cause severe damage to the actuator. Uni-Lift offers, as an option, a standard rotary limit switch for this purpose. Other electronic devices include Encoders and Linear Position Transducers and can also be provided by Uni-Lift. 9. Can multiple actuators be Yes, but do not exceed 300% of the rated input torque for a given actuator. Use used in a system? the standard catalog formulas to determine input torque and motor size. Yes, as long as the input turns for 1 inch of travel are equal. This is sometimes 10. Can different size actuators be used in the same system? done to accommodate varying load conditions.

UNI-LIFT 800-323-9114 FREQUENTLY ASKED QUESTIONS

 11. What is the system efficiency?
 2 actuator system: 95% 3 actuator system: 90%

 4-actuator system: 86% 6 actuator system: 82%

 Right angle gearbox efficiency is 95%

 Helical Gear Reducers:
 Single reduction 98.5%

 Double reduction 97%

 Worm Gear Reducers =
 Horsepower out x 100

 Horsepower in

INTRODUCTION

- 12. What is the maximum input speed? Most Uni-Lift units can be run at 1800 RPM (some run up to 2587 RPM). The catalog sizing procedure correlates the Load vs. Input RPM and Duty Limits and Cycle Times. A gear motor, Helical Gear Reducer, or a Worm Gear Reducer is used to reduce the input RPM to the actuator to provide the required travel speed of the load screw (load screw velocity). Many Uni-Lifts can be driven directly by 1800, 1150 and 900 RPM motors. Motors and reducers are available mounted directly to many Uni-Lift models.
- Can standard Uni-Lift actuators be used for continuous duty?
 Yes. The standard catalog sizing procedure includes the formula for determining the duty limits for each actuator model. This unique feature allows you to calculate the duty cycle limits of each Uni-Lift model for your application.
- 14. What is the duty cycle? Duty cycle is the time it takes the actuator to heat up under a given set of operating conditions, limited to a maximum temperature of 180° F.
- 15. What causes heat build up in the actuator? The actuator is a mechanical gearbox assembly. The friction of the gears, load screw, bearings and seals generate heat while the actuator is operating. The combination of travel, loading, and input speeds all affect the temperature rise of the actuator. Uni-Lift sizing calculations take these variables into account to insure that you select the right actuator model for your application.
- 16. What is the load screw capacity and travel? This is based on the relationship of the screw diameter and the length. Screws in tension are rated for the full capacity of the actuator, regardless of length, providing they do not rotate faster than the critical speed. For screws in compression, capacity is limited by the load screw's column strength. The column strength of a screw is reduced as the screw gets longer. Use the maximum extended screw length (ESL) when using the Column Buckle Charts to determine load screw capacity.
- 17. How do I determine the full-extended screw length?
 The Extended Screw Length (ESL) is normally equal to the travel. Allowances must be added for the closed height of a boot and the addition of stop nuts or special closed heights. These allowances increase the length of the screw. For inverted actuators, the thickness of the mounting structure must also be included. This total length (ESL) should be used when determining the column load capacity of the actuator.
- **18.** Should the load being positioned be guided? It is highly recommended that the load be guided; however, it is not necessary. A guided system will provide more column stability and allow longer load screw travel. Column length is greatly reduced on unguided systems. External load forces common with unguided systems are detrimental to the life and operation of the Uni-Lift.
- 19. Can the actuator withstand side loading or a bending moment?
 Yes, but this is not recommended. Consult Uni-Lift if this condition will be present! These types of loads apply greater forces on the load screw and housing assembly causing premature wear. Guides are highly recommended and should be used to eliminate side and bending loads.

INTRODUCTION UNI-LIFT.

20. Is there backlash between the load screw and gear nut? Yes. This is necessary to allow for sliding or rolling action of the screw through the nut. Anti-Backlash actuators are available when the backlash needs to be minimized. See the catalog section for these models and features. Input torque requirements are greater for anti-backlash design actuators.

LINEAR MOTION

800-323-9114

21. Can the actuator withstand shock loading? This is not recommended. Oversized actuators are required to handle shock loads. Solid thrust bearings are also available in many actuator models when constant vibration and shock are present in an application.

22. What mounting position can the actuator be mounted? Uni-Lifts can be mounted in any position, vertical, horizontal or in-between. A position other than vertical should be noted on inquires and purchase orders since special accommodations may be required.

- 23. How is the load screw protected? Standard translating screw actuators are fitted with a screw protection tube that stores the screw when the actuator is in the closed position. Boots are available and recommended to protect the screw in the extended position. Two (2) boots may be required for rotating actuators with traveling nuts.
- 24. How do I attach the load to be positioned to the load screw?
 For translating actuators, the load screw has a standard threaded end that can be used to attach the load. Top Plates or Clevis Ends are also available. For traveling nut designs, the traveling nut has a flange with mounting holes. The actuator housing has a mounting base and is also available with a clevis mount for double clevis requirements.
- 25. Will the load screw rotate? Yes. You need to prevent the load screw from rotating to produce linear motion. The load screw will not rotate in a multi-unit system with all the load screws attached to the same structure. If rotation of the screw cannot be prevented in the application design, a keyed configuration is available for either the Machine or Ball Screw Uni-Lift. Input torque will increase for keyed actuators and the capacity may be reduced to 25% of rating. Contact factory for keyed applications.
- **26.** What is the maximum temperature rating? 400°F. Standard Uni-Lifts are designed to operate at 80°F ambient temperature with a 100°F temperature rise. For higher temperatures, special grease and seals are used to reach temperature ranges up to 400°F. Advise Uni-Lift of these requirements.
- 27. What is the low range operating temperature?
- 28. Can actuators be used in food industry applications (USDA)?
- 29. How do I lubricate a screw actuator?
- 30. How do I select the right actuator?

Minus 100°F with special grease. Advise Uni-Lift of these requirements.

Uni-Lift uses USDA approved lubrication for these applications. Advise Uni-Lift of these requirements.

Use the proper grease. Fill the gearbox by pumping grease into the grease fittings supplied in the actuator housing. The screws should have grease applied directly to them with a rag or paintbrush. This must be done as part of a regularly scheduled maintenance program.

- e right Determine the direction of the load (compression/tension) and the screwmounting configuration. Determine the dynamic and static load on each actuator. From the catalog, identify the configuration, Upright, Inverted, Translating, Rotating and required attachments (top plate, clevis, boots, etc). Determine the travel time in minutes (inches per min.). Follow the simple sizing calculations included in the catalog.
- 31. Who do I call for help? Uni-Lift, 800-323-9114, Templeton, Kenly, & Co., Inc., Broadview, IL.

UNI-LIFT PRODUCTS IN ACTION

LINEAR MOTION 800-323-9114

INTRODUCTION

IN PRODUCTION

Uni-Lifts accurately position and hold laminating rollers for OEM machinery manufacturer.

IN POSITIONING

A manufacturer of glass charging equipment uses Uni-Lifts to control a batch charger.

IN MATERIAL TESTING

Structure and actuators are tested with an induced side load on top of the primary load. Each hand cranked Uni-Lift supports and positions a corner of the assembly cart.

IN MATERIAL HANDLING

Motorized Uni-Lift pushes and pulls 10,000 lbs. of material in and out of a heat treatment oven. High worm ratio eliminates the need for external gear reducer.

UNI-LIFT FEATURES & BENEFITS

Interchangeability. M-Series machine screw actuators available in 1 ton through 250 ton capacities, and interchange with competitive units.

"V" Threaded Screw End

Easy mounting of optional screw end accessories or customer connection, insures better alignment.

LINEAR MOTION 800-323-9114

Bearing journal on end of load screw for rotating jacks provides for better column stability.

High Strength Rolled Formed Thread Load Screws

- Provide minimum friction for smooth operation and longer life from a work hardened surface.
- Self-locking, minimal lead error design to provide positive positioning.
- Minimal axial backlash.

Tapered Roller Bearings

- Preloaded for reduced assembly spring rate and high thrust loads.
- Provide excellent support for side loading and horizontal applications.
- Maintains exact gear alignment under separating and thrust forces from gearing.
- Bearings sized for tough loading conditions.

High Strength Gearing

- Precision hobbed gears and worms manufactured to American Gear Standards with close tolerances and minimal backlash.
- Gear centers are designed for long life.

Rugged Housings

Well proportioned aluminum, iron, or steel construction.

Superior Performance

 Uni-Lift M-Series actuators provide design integrity and reliability required to stand up where rugged duty and precision is important. (For higher cycle or greater column capacity requirements, see our J-Series Machine Screw Jacks.)

Synchronized Travel

Uni-Lift actuators can be arranged in systems to provide synchronized travel when driven from a common source.

UNI-LIFT. PRODUCTS IN ACTION

LINEAR MOTION
800-323-9114M-SERIES MACHINESCREW ACTUATOR

IN HYDROELECTRIC POWER

Uni-Lifts control the flow of water by positioning gates in a hydroelectric dam. Each gate utilizes two 20 ton machine screw actuators with motor and limit controls for easy and reliable operation.

IN EXPLORATION

Geological exploration utilizes Uni-Lift motorized actuators to extend trailer stabilizers, and position a satellite dish used to transmit data in some of the harshest environments on earth.

IN SCIENTIFIC RESEARCH

Uni-Lift actuators provide exact positioning of magnets used in a particle ring accelerator.

IN MANUFACTURING

Uni-Lift motorized actuators are used in slide gates for large pollution control systems.

LINEAR MOTION 800-323-9114

M-SERIES TECHNICAL SPECIFICATIONS (Table 1)

MODEL TYP	PE AND SIZE	M1	M2.5	M5	M10	M15	M20	M30	M50	M75	M100
CAPACITY IN	POUNDS (P)	2,000	5,000	10,000	20,000	30,000	40,000	60,000	100,000	150,000	200,000
DIA. OF LO	AD SCREW	0.75	1.00	1.50	2.00	2.25	2.50	3.38	4.50	5.00	6.00
LEAD OF	SCREW	0.20	0.25	0.38	0.50	0.50	0.50	0.67	0.67	0.67	0.75
GEAR C	ENTERS	1.250	1.750	2.188	2.598	2.598	2.875	3.750	5.313	6.000	7.500
	LOW	5:1	6:1	6:1	8:1	8:1	8:1	10 2/3:1	10 2/3:1	10 2/3:1	12:1
GEAR RATIO	HIGH	20:1	24:1	24:1	24:1	24:1	24:1	32:1	32:1	32:1	36:1
(TPI) TURNS OF INPUT	LOW	25	24	16	16	16	16	16	16	16	16
SHAFT FOR 1" OF RISE	HIGH	100	96	48	48	48	48	48	48	48	48
TORQUE REQUIRED TO	LOW	0.024	0.026	0.038	0.041	0.045	0.048	0.051	0.065	0.068	0.078
LIFT ONE POUND (lb-in) (Tp)	HIGH	0.011	0.011	0.015	0.022	0.024	0.025	0.028	0.037	0.035	0.045
NO LOAD TORQ	UE (lb-in) (To)	4	5	12	18	18	36	48	96	156	204
MAXIMUM INPUT RPM		1800	1800	1800	1800	1800	1800	1200	1200	900	900
	0" TRAVEL	5	17	30	45	55	80	145	280	495	845
POUNDS	PER INCH	0.5	0.6	0.7	1.1	1.2	1.7	2.9	5	6.3	7.4
RADIUS OF G	YRATION (r)	0.154	0.218	0.316	0.423	0.486	0.566	0.743	1.074	1.149	1.387

1. Complete the Uni-Lift Selection Guide located in the inside front cover.

2. Determine the maximum load on one actuator: P₁

$$P_1 = \frac{P_2}{N}$$

 P_2 = Total system load (lbs.)

 N^2 = Number of actuators in the system

On multi-unit systems where load is not equally distributed, change P_1 to the greatest load supported by one unit.

3. Check Load Screw Column Capacity:

- If the load screw is in tension, select a Uni-Lift with a rated capacity equal to or greater than the maximum load (P_1) on one actuator. Go to step 4.
- If the load screw is in compression, use the calculation steps on page 15 to determine the maximum permissible Extended Screw Length, (ESL). Select a Uni-Lift that has a load screw column length capacity equal to or greater than the length required for the load.
- 4. Determine the desired load screw velocity (in./min.): (V_d)

$$V_d = \frac{\text{Rise}}{t_a}$$

Rise = One way travel under load (in.) t₂ = Required one way travel time (min.)

5. Determine Desired Input Speed: (RPM_d)

 $RPM_{d} = TPI \times V_{d}$ TPI = Turns of the input shaft for 1 inch of rise. (See technical specification table 1.)

6. Determine Load Screw Velocity: (V) From the catalog data, select the drive equipment with an output speed close to the desired input speed (RPM_{d}). Use the output speed to recalculate the actual load screw velocity (V).

$$V = \frac{RPM}{TPI}$$

7. Check the Duty Limit of the actuator:

$$D_1 = \frac{(2 \times \text{Rise} \times C_h)}{V}$$

 D_1 = Duty time per hour

 $C_{h} = Cycles per hour$

Determine if D_1 is equal to or greater than D_2 . If D_2 is less than D_1 reduce the input speed to the actuator, or reduce the load per actuator by adding more actuators to the system. D_2 = Duty Limit (see page 14 for calculations)

Motor Sizing:

The following is a QUICK ESTIMATE FOR MOTOR SIZING FOR A ONE ACTUATOR SYSTEM. For detailed motor sizing and torque requirements on single or multi-unit systems, skip steps 8 and 9, and go to step 10.

8. Estimate the Input Torque T_e (lbs/in): $T_e = T_p x P_3$

 $T_{\rm p}$ = Torque required to lift one pound (see table 4 for $T_{\rm p}$ values.) $P_{\rm 3}$ = Maximum system running load.

9. Estimate Uni-Lift Horsepower: HP

$$HP_{e} = \frac{(T_{e} \times RPM)}{63025}$$

LINEAR MOTION
800-323-9114M-SERIES MACHINESCREW ACTUATOR

M-SERIES MOTOR SIZING AND TORQUE CALCULATIONS (Table 2)

MODEL &	GEAR RATIO	Turns per	Rated cap	STATIC		T = RUN	UNIT INPU	T TORQUE JE (Ib-in) at	AT RATED C VARIOUS RI	APACITY PM (Theore	tical)		NO LOAD
SIZE		inch TPI	(lbs) P	TORQUE Ts	50 RPM	115 RPM	172 RPM	345 RPM	600 RPM	870 RPM	1140 RPM	1725 RPM	TORQUE To
M 1	5:1	25	2,000	48	35	33	32	29	27	26	25	24	4
	20:1	100		22	14	13	13	12	11	10	9	9	
M 2.5	6:1	24	5,000	130	94	87	83	76	71	68	65	62	5
	24:1	96		57	36	34	32	29	26	25	23	21	
M 5	6:1	16	10,000	377	269	248	236	216	202	192	185	174	12
	24:1	64		151	98	91	87	78	71	65	62	58	
M 10	8:1	16	20,000	827	567	519	491	446	414	392	377	353	18
	24:1	48		441	273	249	234	208	184	172	164	152	
M 15	8:1	16	30,000	1350	909	826	771	707	652	615	588	549	18
	24:1	48		719	441	399	376	331	293	273	259	239	
M 20	8:1	16	40,000	1912	1272	1147	1073	979	900	847	808	751	36
	24:1	48		999	609	551	518	453	402	375	355	327	
M 30	10 2/3:1	16	60,000	3056	1976	1770	1652	1499	1372	1287	1226		48
	32:1	48		1688	985	881	822	712	626	580	548		
M 50	10 2/3:1	16	100,000	6465	3880	3356	3166	2821	2544	2362	2235		96
	32:1	48	1	3705	1988	1730	1591	1329	1177	1082	1017		
M 75	10 2/3:1	16	150,000	10141	6082	5268	4965	4412	3965	3671	3464		156
	32:1	48	1	5231	2914	2555	2357	1995	1778	1640	1545		
M 100	12:1	16	200,000	15596	8750	7486	7006	6154	5487	5059	4761		204
	36:1	48		9027	4536	3868	3515	2913	2557	2340	2195		

For RPM's not shown use the next slowest RPM. For speeds less than 50 RPM contact factory.

10. Determine Uni-Lift Running Load Proportion Factor: (f)

$$f = \frac{P_3}{(P \times N)}$$

P = Rated Capacity of Uni-lift

- P₃ = Max. system running load N= Number of Uni-lifts
- **11**. Determine Unit Running Torque: (T_1) (Ib-in)

 $T_1 = (T x f) + T_0$

 $T_0 = No load torque from chart$

- T = Running torque from chart
- 12. Find the System Running Torque: (T_2) (Ib-in) $T_2 = \frac{(T_1 \times N)}{e_1}$
- e₁ = System Arrangement Efficiency, see page 77
- 13. Find System Power:

System HP

 (63025 x e_2) e₂ = Reducer Efficiency, see page 77 RPM = Uni-Lift input shaft speed

14. Determine System Starting Torque: (T_{s2}) $T_{s2} = \frac{((T_s \times f) + T_o) \times N}{e_2}$ 15. Determine Motor Starting Torque: (T_{sm}) (lb in)

$$T_{sm} = \frac{T_{s2}}{(R \times e_2)}$$

R = Gear Reducer Ratio

16. Determine Motor Running Torque: (T_{rm})

$$T_{\rm rm} = \frac{I_2}{(R \ x \ e_1)}$$

- Select a motor with a power rating greater than HP requirement in step 13, a starting torque greater than T_{sm} requirement in step 15, and a motor running torque greater than T_{rm} in step 16. See motor chart page 64 for horsepower and torque ratings.
- Select system torque transmission equipment (reducer, mitre gear boxes, couplings, etc.) with ratings greater than the torque to be transmitted, see step 12 and system arrangements, page 77.
- Size shafting for system starting torque to be transmitted, see step 16, and Table B page 76.

T_s = Static torque from chart

M SERIES DUTY CYCLE (Table 3)

Uni-Lift Duty Limit at Full Rated Capacity and 80° F Ambient Temperature

MODEL	RATIO	TPI		L2 - DUTY LIMIT SERVICE FACTOR @ VARIOUS RPM INPUT SPEEDS							
and			50	115	172	345	600	870	1140	1725	2587
SIZE			RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM
M-1	5:1	25	356	230	120	70	44	33	27	20	15
	20:1	100	639	412	211	118	75	57	47	35	25
M-2.5	6:1	24	164	106	56	32	20	15	12	8	7
	24:1	96	450	290	149	83	53	40	34	24	18
M-5	6:1	16	107	70	38	22	14	10	8	6	
	24:1	64	294	190	98	55	36	28	22	16	
M-10	8:1	16	66	43	23	13	8	6	5	4	
	24:1	48	137	89	47	27	18	13	11	8	
M-15	8:1	16	43	29	16	9	5	4	3	2	
	24:1	48	91	59	31	18	12	9	7	5	
M-20	8:1	16	43	28	15	9	5	4	3	2	
	24:1	48	85	55	29	17	11	8	7	5	
M-30	10 2/3:1	16	39	26	14	8	6	4	3		
	32:1	48	81	53	28	16	11	8	7		
M-50	10 2/3:1	16	25	17	9	5	4	3	2		
	32:1	48	52	34	19	11	7	5	4		
M-75	10 2/3:1	16	24	16	8	4	3	2	1		
	32:1	48	51	33	18	11	7	5	4		
M-100	12:1	16	26	17	9	5	4	3	2		
	36:1	48	53	35	20	12	8	6	5		

Duty Limit Service factor (L₂) = Operating time allowed per hour. The numbers greater than 60 are theoretical values and exceed 100% duty, solely to provide base data for adjusting L₂.

• The L₂ values are based on Uni-Lifts loaded at rated capacity, operating in an ambient temperature of 80° F., with a maximum allowable temperature rise of 100° F.

• For ambient temperatures above 180° F or below -20° F, consult factory.

· For speeds not shown, use the next fastest RPM value.

1. Determine Adjusted Duty Limit : D₂

When the unit load is at rated capacity, and the ambient temperature is at 80° F, the L_2 value from the table equals D_2 . If not, proceed to step 1A.

1A) For different temperature service, or a unit load less than rated capacity, use the following equation to determine the Adjusted Duty Limit Service Factor (D_2) .

$$D_2 = \frac{(180 - T_A) x P x L_2}{100 x P_4}$$

 L_2 = Duty Limit Service Factor (see Table 3)

 $T_{a} =$ Ambient temperature (F°) P=Rated capacity (lbs.)

 $P_4^{'}$ = Maximum running load per actuator (lbs.)

P⁼ Rated capacity of the Uni-Lift

2. Determine if Duty Cycle is acceptable:

If $D_2 > = 60$ minutes, the application is rated for continuous duty. If $D_2 > = D_1$ then the application is acceptable.

If $D_2 < D_1$ then the duty cycle limit has been exceeded for this application. You must do one of the following: select larger size Uni-Lift, reduce load by adding additional Uni-Lifts, or reduce speed. If you reduce speed, you must recalculate V₁ and D₁ from the Technical Specifications page 12 steps 6 and 7.

EXAMPLE

A. Consider for an M-10 low ratio 8:1 operating in 100°F ambient temperature, 15,000 lbs. load, and 600 RPM, with a rise of 30 inches and 5 cycles per hour:

$$D_1 = \frac{(2 \text{ x Rise x } C_h)}{V_1}$$

$$D_1 = \frac{(2 \times 30 \times 5)}{37.5}$$

Duty time per hour = 8.0 minutes per hour

 $D_2 = \frac{(180 - 100) \times 20,000 \times 8}{100 \times 15,000}$ Duty cycle limit = 8.53 minutes per hour

Since D_2 is greater than D_1 the application is OK for the duty cycle limit.

INEAR MOTION 800-323-9114 M-SERIES MACHINE SCREW ACTUATOR

M-SERIES MACHINE SCREW COLUMN BUCKLE CHART

The maximum ESL values in the chart above are based on a **2:1 factor of safety against column buckle**, and on a standard design with a top plate, or a rotating design travel nut. Increased load screw lengths are not shown where the slenderness ratio exceeds 400.

1. Determine extended screw length: (ESL)

The ESL is the distance in inches the load screw can extend from the housing. See layout page for the model selected to determine ESL.

2. Determine the adjusted screw length: (ASL)

The chart above is for a standard design top plate or the rotating design travel nut. For other design configurations you must adjust the ESL value using the F factor multiplier to determine the adjusted screw length.

ASL=ESL x F

F = Column Factor Multiplier

		Guided	Unguided
DESIGN CONFIGURATION	F factor	K factor	K factor
Standard Design Top Plate	1	0.65	1.3
Rotating Design Traveling Nut	1	0.65	1.3
Standard Design Clevis End	1.25	0.8	1.6
Keyed Design Top Plate	1.25	0.65	1.3
Keyed Design Clevis End	2	0.65	1.6

3. Select correct size Uni-lift: On the chart above, draw a horizontal line to represent the maximum load (P_1). Using the set of ESL values that apply to your design (guided or unguided), draw a vertical line to represent the ESL or ASL. All of the Uni-Lift's above the point of intersection will be acceptable.

Screw lengths above the dotted line comply with AISC maximum slenderness ratio KL/r=200 specified for design and fabrication of structural steel buildings. This data is for reference only and is not a limiting factor, except as required.

K=Column Factor L=Extended Screw Length (ESL) r =Radius of Gyration See Technical Specifications (Table 1) for r values

6.00 3.00 2.50 CLOCKWISE ROTATION RAISES LOAD 1.44 0.500 DIA. 2.63 4.00 1.250 1/8 X 1/16 X 1.0 LG KEYWAY \land \oplus 0.41 DIA. THRU 2 HOLES 2.00 4.00 5.00

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	5:1	25	0.024			
Н	20:1	100	0.011			
RATE	D CAPA	CITY	2,000 lbs.			
Max I	nput Sp	eed	1800 rpm			
Max Screw Stock			230 in.			
Load	Screw		.75 in. dia. x .200 in. lead			
Stop	Nut Allo	wance	.75 in.			

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- Customer is responsible for providing positive stops at ends of travel.
 KEYED JACKS: ADD 0 INCHES TO JACK HOUSING.

INVERTED M-1-I-T

UPRIGHT M-1-U-T

TRANSLATING & KEYED

M1 - 1 TON

2.75 DIA. TRAVEL + 0.06

TOP PLATE AND CLEVIS END OPTIONS

LINEAR MOTION 800-323-9114

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	6:1	24	0.026			
Н	24:1	96	0.011			
RATE	D CAPA	CITY	5,000 lbs.			
Max I	Input Sp	eed	1800 rpm			
Max S	Screw S	tock	232 in.			
Load	Screw		1 in. dia. x .250 in. lead			
Stop	Nut Allo	wance	.75 in.			

NOTES:

- 1. Load screw or nut must be secured to produce linear travel. 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel. 6. KEYED JACKS: ADD .5 INCHES TO JACK HOUSING.

TRANSLATING & KEYED

TOP PLATE AND CLEVIS END OPTIONS

UPRIGHT M-2.5-U-T

TRAVEL

3.00 DIA.

1.750

Ò

Æ Ó

4.13

5.04 CLOSED. 0.50

TRAVEL

+ 0.37

1.68 DIA

TRAVEL NUT POSITION B

TRAVEL NUT POSITION A

9.00 4.50 1.29 - 3.00 2.25 CLOCKWISE ROTATION RAISES LOAD \oplus \oplus Ħ Ħ ____ 0.750 DIA. 6.50 8.00 đ Ð 2.188 ¢ 3/16 X 3/32 X 1.25 LG KEYWAY 2.25 3.00 ⊕ \oplus 4.50 0.69 DIA 4 HOLES 6.00

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	6:1 16		0.038			
Н	24:1	64	0.015			
RATE	d capa	CITY	10,000 lbs.			
Max I	nput Sp	eed	1800 rpm			
Max Screw Stock			230 in.			
Load	Screw		1 1/2 in. dia. x .375 in. lead			
Stop	Nut Allo	wance	1.13 in.			

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel. 6. KEYED JACKS: ADD .75 INCHES TO JACK HOUSING.

UPRIGHT M-5-U-T 2.250 0.50 ESL TRAVEL Ò C ł 2.38 DIA. -5.06 TRAVEL -0.06 + 0.19 6.00 CLOSED

TRANSLATING & KEYED

UNI-LIFT

M5 - 5 TON

TOP PLATE AND CLEVIS END OPTIONS

POSITION B

LINEAR MOTION 800-323-9114

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (lb-in)				
L	8:1 16		0.041				
Н	24:1 48		0.022				
RATE	RATED CAPACITY		20,000 lbs.				
Max I	Max Input Speed		1800 rpm				
Max S	Max Screw Stock		228 in.				
Load Screw			2 in. dia. x .500 in. lead				
Stop Nut Allowance			1.5 in.				

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: ADD .81 INCHES TO JACK HOUSING.

POSITION B

TRANSLATING & KEYED

INVERTED M-10-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION A

5 50 -1.35 - 3.75 3.00 CLOCKWISE ROTATION RAISES LOAD \odot \oplus đ - 1.000 DIA. 7.50 9.00 P đ 2.598 Þ £ 1/4 X 1/8 X 1.5 LG KEYWAY 2.50 3.25 \oplus \odot 6.00 0.81 DIA 4 HOLES 7.50

11.00

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)				
L	8:1 16		0.045				
Н	24:1 48		0.024				
RATED CAPACITY		CITY	30,000 lbs.				
Max Input Speed		eed	1800 rpm				
Max Screw Stock		tock	224 in.				
Load Screw			2 1/4 in. dia. x .500 in. lead				
Stop Nut Allowance			1.75 in.				

LINEAR MOTION 800-323-9114

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- Customer is responsible for providing positive stops at ends of travel.
 KEYED JACKS: ADD 1.06 INCHES TO JACK HOUSING.

TRANSLATING & KEYED

UNI-LIFT

M15 - 15 TON

INVERTED M-15-I-T

-2.00

TRAVEL

ESL

TRAVEL NUT POSITION A

TOP PLATE AND CLEVIS END OPTIONS 5.00 0.81 DIA. THRU 4 PLACES 90 i APART 2.50 ON A 4.12 DIA. B.C. 5.50 DIA - 1.500 0.75 1 2.25 DIA. 2.06 I ü UPRIGHT 10.00 INVERTED 3.75 CLOSED 1.25 CLOSED HEIGHT HEIGHT 2.25 DIA. UPRIGHT 8.31 0.91 DIA. THRU **INVERTED 2.06** UPRIGHT M-15-U-R INVERTED M-15-I-R **ROTATING WITH** 2.750 2.750 -0.63 **TRAVELING NUT** 3.00 0.81 DIA. THRU ON A 5.00 DIA. B.C. -0.501.00 6 9 6 9 4 PLACES @ 90j APART Æ (⊕) 3.50 DIA. 0 Q Q F 1.500 DIA. 6.50 DIA. -*HUHHHHH* 5.88 DIA.

ESL + 8.25

6.25

TRAVEL-

ESL

6.25

UNI-LIFT. M20 - 20 TON

11.50 5.75 1.67 3.00 - 4.13 CLOCKWISE ROTATION RAISES LOAD \odot \odot ₽ Ð - 1.000 DIA. 8.75 11.00 ₿ ∄ 2.875 Æ Þ £ 1/4 X 1/8 X 1.5 LG KEYWAY 3.00 4.12 \oplus \odot 6.00 1.12 DIA 4 HOLES 8.25

LINEAR MOTION
800-323-9114M-SERIES MACHINE
SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (lb-in)					
L	8:1 16		0.048					
Н	24:1 48		0.025					
RATE	RATED CAPACITY		40,000 lbs.					
Max I	Max Input Speed		1800 rpm					
Max S	Max Screw Stock		224 in.					
Load Screw			2 1/2 in. dia. x .500 in. lead					
Stop Nut Allowance			1.75 in.					

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: ADD 1.2 INCHES TO JACK HOUSING.

UPRIGHT M-20-U-T

TRANSLATING & KEYED

INVERTED M-20-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION B TRAVEL NUT Position A

UNI-LIFT. M30 - 30 TON

14.00 7.00 2 1 9 - 5.12 3.75 CLOCKWISE ROTATION RAISES LOAD \odot \oplus Ð 1.375 DIA. 11.00 13.75 đ þ 3.750 ₽ ſ 1 5/16 X 5/32 X 2.0 LG KEYWAY 3.75 5.12 \oplus \odot 7.50 1.38 DIA 4 HOLES

10.25

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	102/3:1	16	0.051			
Н	32:1	48	0.028			
RATED CAPACITY		CITY	60,000 lbs.			
Max Input Speed		eed	1200 rpm			
Max Screw Stock		tock	228 in.			
Load Screw			3 3/8 in. dia. x .666 in. lead			
Stop Nut Allowance		wance	2 in.			

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- Customer is responsible for providing positive stops at ends of travel.
 KEYED JACKS: ADD 1.38 INCHES TO JACK HOUSING.

TRANSLATING & KEYED

INVERTED M-30-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION B TRAVEL NUT Position A LINEAR MOTION 800-323-9114

M50 - 50 TON

LINEAR MOTION **M-SERIES MACHINE** 800-323-9114 SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)					
L	10 ² /3:1 16		0.065					
Н	32:1 48		0.037					
RATE	RATED CAPACITY		100,000 lbs.					
Max	Max Input Speed		1200 rpm					
Max 3	Max Screw Stock		222 in.					
Load Screw			4 1/4 in. dia. x .667 in. lead					
Stop Nut Allowance			2.25 in.					

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: CONSULT FACTORY.

TRANSLATING & KEYED

INVERTED M-50-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION "B"

TRAVEL NUT POSITION "A"

24 0

12.0 7.0 - 5.0 -4.4 ----CLOCKWISE ROTATION RAISES LOAD (------i--1.750 DIA. e ł C 23.0 6 000 C 3/8 X 3/16 X 2 3/4 LG. **KEYWAY** 19.0 С \cap 7.5 9.5 10.0 14.0 2.13 DIA. THRU 4 PLACES

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)					
L	10 ² /3:1	16	0.068					
Н	32:1	48	0.035					
RATED CAPACITY		CITY	150,000 lbs.					
Max Input Speed		eed	900 rpm					
Max Screw Stock		tock	127 in.					
Load Screw			5 in. dia. x .666 in. lead					
Stop Nut Allowance			2.375 in.					

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel. 6. KEYED JACKS: CONSULT FACTORY.

INVERTED M-75-I-T

UPRIGHT M-75-U-T

TRANSLATING & KEYED

UNI-LIFT

M75 - 75 TON

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION B

LINEAR MOTION 800-323-9114

UNI-LIFT. M100 - 100 TON

LINEAR MOTION
800-323-9114M-SERIES MACHINE
SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)					
L	12:1 16		0.078					
Н	36:1 48		0.045					
RATE	RATED CAPACITY		200,000 lbs.					
Max I	Max Input Speed		900 rpm					
Max S	Max Screw Stock		125 in.					
Load Screw			6 in. dia. x .750 in. lead					
Stop Nut Allowance			4 in.					

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: CONSULT FACTORY.

INVERTED M-100-I-T

TRANSLATING & KEYED

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT Position "B" TRAVEL NUT Position "A"

UNI-LIFT M150 - 150 TON

LINEAR MOTION 800-323-9114

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)					
L	12:1 12		Contact Factory					
Н	36:1	36	Contact Factory					
RATED CAPACITY		CITY	300,000 lbs.					
Max Input Speed		eed	600 rpm					
Max Screw Stock		tock	125 in.					
Load Screw			7 in. dia. x 1 in. lead					
Stop Nut Allowance			5 in.					

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: CONSULT FACTORY.

UNI-LIFT M250 - 250 TON

LINEAR MOTION
800-323-9114M-SERIES MACHINE
SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (lb-in)				
Н	50:1 50		Contact Factory				
RATE	RATED CAPACITY		500,000 lbs.				
Max I	Max Input Speed		600 rpm				
Max S	Max Screw Stock		117 in.				
Load Screw			9 in. dia. x 1 in. lead				
Stop Nut Allowance			6 in.				

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: CONSULT FACTORY.

A-SERIES MACHINE SCREW ACTUATOR ANTI-BACKLASH

LINEAR MOTION 800-323-9114

FULLY ADJUSTABLE BACKLASH

UNI-LIFT ANTI-BACKLASH

ANTI-BACKLASH FEATURES

The Pow-R-Jac Anti-Backlash design allows the backlash in the lifting screw to be minimized to meet the application requirements by simply adjusting the adjustment plug 23. Features include: One-piece gear nut 3, independent adjustment of the thrust bearing preload (to bearing manufacturers recommendations), extra long screw thread engagement, reduced unit spring rate, and full gear tooth contact. This design insures proper bearing alignment and worm gear tooth contact for maximum unit efficiency. The anti-backlash Pow-R-Jac is a quality product you can depend on to provide a long operating life.

THE ADJUSTMENT PLUG 23 ROTATES TO ELIMINATE AXIAL BACKLASH. THE TWO-PIECE NUT CONSISTS OF THE ADJUSTMENT PLUG 23 AND THE DRIVE SLEEVE AND GEAR (3). FACTORY BACKLASH ADJUSTMENT IS 0.004 INCHES AND IS OBTAINED BY ROTATING THE ADJUSTMENT PLUG IN THE COUNTERCLOCKWISE DIRECTION. SOCKET SET SCREWS (35) MUST BE TIGHTENED AFTER ADJUSTMENT!

> ★ SHOWN ROTATED 90° FROM ACTUAL LOCATION

ITEM	QTY	DESCRIPTION
1	1	HOUSING
2	1	HOUSING COVER
3	1	DRIVE SLEEVE & GEAR
4	1	END CAP
5	1	WORM SHAFT
6	1	LIFT SCREW
7	1	SCREW COVER (NOT SHOWN)
8	1	SCREW COVER PLT (NOT SHOWN)
9	1	HOUSING BUSHING
10	2	SHIM
11	2	BEARING CONE (WORM)
12	2	BEARING CUP (WORM)
13	2	SEAL (WORM)
14	1	BEARING CONE (LOWER)
15	1	BEARING CUP (LOWER)
16	1	BEARING CONE (UPPER)
17	1	BEARING CUP (UPPER)
18	2	KEY (WORM)
19	1	GREASE FITTING
20	1	PIPE PLUG
21	8	HEX HEAD CAP SCREW
22	8	LOCK WASHER
23	1	ADJUSTMENT PLUG
24	2	SOCKET SET SCREW (1/2 DOG PT.)
25	2	SOCKET SET SCREW (CONE PT.)

BILL OF MATERIAL

JACK SIZE	MAX. ADJUST. PLUG ALLOWABLE NUT APPROX. ADJU ROTATION BEFORE THREAD WEAR BEFORE ROTATION FO REPLACEMENT REPLACEMENT AXIAL ADJUS			
21⁄2	115°	1⁄16	45° (1⁄8)	
5	105°	3⁄32	45° (1⁄8)	
10	100°	1⁄8	34° (¾2)	
15	110°	1⁄8	45° (1⁄8)	
20	110°	1⁄8	45° (1⁄8)	
30	105°	1⁄8	45° (1⁄8)	

FEATURES & BENEFITS

J-Series machine screw actuators are available in 1/4 ton through 40 ton capacities. Easy mounting of optional screw end accessories, insures better alignment.

LINEAR MOTION

800-323-9114

High Strength Rolled Formed Thread Load Screws

- Provides minimum friction for smooth operation and longer life from a work hardened surface.
- Self locking design provides positive positioning, and no back driving.
- Minimal axial backlash with Class 3 fit.

Tapered Roller Bearings

- Preloaded for high thrust loads and side loading in horizontal applications.
- Maintains gear alignment under separating and thrust forces from gearing.
- Bearings sized for tough loading conditions.

High Efficiency Gearing

- Precision formed gears manufactured to close tolerance with minimum backlash, usually less than 1°.
- Large gear centers for longer life and higher efficiencies. (Approaching 50%.)
- Higher allowable input speeds for faster cycles.

Rugged Housings

- Ductile iron on the larger J1 to J100 models.
- Smaller J3/4 housings are made of a lightweight, high strength aluminum alloy.
- Lower closed heights save space and weight.

Superior Performance

Uni-Lift actuators provide design integrity and reliability for heavy duty jobs where precision is important. For lighter loads, Uni-Lifts often satisfy the requirements of higher velocity applications that would otherwise require more expensive ball screw actuators.

Synchronized Travel

Uni-Lift actuators can be arranged in systems to provide synchronized travel when driven from a common source.

Structure and actuators are tested with an induced side load on top of the primary load. Each hand cranked Uni-Lift controls a corner of the assembly cart.

Motorized Uni-Lift pushes and pulls 10,000 lbs. of material in and out of a heat treatment oven. High worm ratio eliminates the need for external gear reducer.

UNI-LIFT PRODUCTS IN ACTION

IN MANUFACTURING

Positioning of large guillotine damper in process plant is easy and reliable when Uni-Lifts are used. The higher efficiencies allow smaller motors to save cost.

IN ASSEMBLY

OEM equipment manufacturers choose Uni-Lift to position the pallets in a nailing operation. Rolled thread load screws, tapered roller bearings and larger gear centers provide long life actuation without interruption.

IN PRODUCTION

J-SERIES MACHINE

SCREW ACTUATOR

Uni-Lifts at an aluminum reduction mill control annode position. The larger gear center design stands out when annodes are pulled from frozen crust without damage to the gear set.

LINEAR MOTION 800-323-9114

IN BROADCASTING

Satellite antennas not only require accurate, repeatable positioning, but also the integrity to withstand the elements.

H & J SERIES TECHNICAL SPECIFICATIONS (Table 4)

Model Type and	Size	H1/4	H1/2	J3/4 -20	J3/4-40	J1	J2	J5	J10	J20	J25	J40
CAPACITY IN POUNDS (P)		500	1,000	1,500	1,500	2,000	4,000	10,000	20,000	40,000	50,000	80,000
DIAMETER OF LOAD	SCREW	0.500	0.625	0.625	0.625	0.750	1.000	1.500	1.750	2.500	2.750	4.250
LEAD OF SCRE	W	0.250	0.250	0.250	0.125	0.250	0.250	0.333	0.333	0.500	0.500	0.667
GEAR CENTER	RS	0.946	0.946	0.941	0.941	1.504	1.835	2.260	3.014	3.675	4.009	5.164
	LOW	5:1	5:1	5:1	5:1	5:1	6:1	5 1/3:1	6:1	8:1	9:1	9:1
GEAR RATIO	MEDIUM						8:1	12:1				
	HIGH	10:1	10:1			10:1	12:1	24:1	12:1	16:1	18:1	
(TPI)	LOW	20	20	20	40	20	24	16	18	16	18	18
TURNS OF INPUT	MEDIUM						32	32				
SHAFT FOR 1" OF RISE	HIGH	40	40			40	48	72	36	32	36	
(Tp)	LOW	0.024	0.026	0.026	0.021	0.028	0.028	0.042	0.046	0.050	0.039	0.032
TORQUE REQUIRED TO	MEDIUM						0.024	0.027				
LIFT ONE POUND (Ib-in)	HIGH	0.013	0.015			0.017	0.018	0.019	0.029	0.032	0.024	
NO LOAD TORQUE (Ib-	in) (To)	1.5	2.0	1.0	2.0	3.0	4.0	5.0	7.0	9.0	10.0	12.0
MAXIMUM INPUT	RPM	1725	1725	2587	2587	2587	2587	1725	1725	1725	1450	1450
APPROXIMATE WEIGHT	0" TRAVEL	2.3	2.3	2	2	9	13	23	47	90	103	103
IN POUNDS	PER INCH	0.1	0.1	0.1	0.1	0.2	0.4	0.7	0.9	1.8	2.1	2.1
RADIUS OF GYRATI	ON (r)	0.094	0.125	0.125	0.125	0.156	0.218	0.334	0.396	0.566	0.628	0.985

1. Complete the Uni-Lift Selection Guide located in the inside front cover.

7. Check the Duty Limit of the actuator:

2. Determine the maximum load on one actuator:
$$P_1$$

$$P_1 = \frac{P_2}{N}$$

 P_2 = Total system load (lbs.)

N = Number of actuators in the system

On multi-unit systems where load is not equally distributed, change P_1 to the greatest load supported by one unit.

- 3. Check Load Screw Column Capacity:
- If the load screw is in tension, select a Uni-Lift with a rated capacity equal to or greater than the maximum load (P_1) on one actuator. Go to step 4.
- If the load screw is in compression, use the calculation steps on page 35 to determine the maximum permissible Extended Screw Length, (ESL). Select a Uni-Lift that has a load screw column length capacity equal to or greater than the length required for the load.
- 4. Determine the desired load screw velocity (in./min.): (V_d)

$$V_d = \frac{\text{Rise}}{t_2}$$

Rise = One way travel under load (in.) t_2 = Required one way travel time (min.)

5. Determine Desired Input Speed: (RPM_d) $RPM_d = TPI \times V_d$

TPI = Turns of the input shaft for 1 inch of rise. (See technical specification table 4.)

6. Determine Load Screw Velocity: (V) From the catalog data, select the drive equipment with an output speed close to the desired input speed (RPM_d). Use the output speed to recalculate the actual load screw velocity (V).

$$V = \frac{RPM}{TPI}$$

$$D_1 = \frac{(2 \times \text{Rise} \times \text{C}_h)}{V}$$

 D_1 = Duty time per hour

 $C_h = Cycles per hour$

Determine if D_1 is equal to or greater than D_2 . If D_2 is less than D_1 reduce the input speed to the actuator, or reduce the load per actuator by adding more actuators to the system. D_2 = Duty Limit (see page 34 for calculations)

Motor Sizing:

The following is a QUICK ESTIMATE FOR MOTOR SIZING FOR A ONE ACTUATOR SYSTEM. For detailed motor sizing and torque requirements on single or multi-unit systems, skip steps 8 and 9, and go to step 10.

- 8. Estimate the Input Torque T_e (lbs/in): T_e = T_p x P₃
- T_p = Torque required to lift one pound (see table 4 for T_p values.)
- P_3 = Maximum system running load.
- 9. Estimate Uni-Lift Horsepower: HP

$$HP_{e} = \frac{(T_{e} \times RPM)}{63025}$$

UNI-LIFT.

LINEAR MOTION
800-323-9114J-SERIES MACHINE
SCREW ACTUATOR

H & J SERIES MOTOR SIZING AND TORQUE CALCULATIONS (Table 5)

MODEL	GEAR	Turns	Rated		UNIT INPUT TORQUE AT RATED CAPACITY								NO
&	RATIO	per	cap	STATIC	T = RUNNING TORQUE (Ib-in) at VARIOUS RPM (Theoretical)								LOAD
SIZE		inch	(lbs)	TORQUE	50	115	172	345	600	870	1140	1725	TORQUE
		TPI	Р	Ts	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	То
H 1/4	5:1	20	500	10.7	6.0	5.6	5.4	5.0	4.6	4.4	4.2	4.0	1.5
	10:1	40		6.7	3.6	3.3	3.2	3.0	2.7	2.5	2.5	2.3	
H 1/2	5:1	20	1,000	24.1	13.7	12.7	12.2	10.9	10.2	9.7	9.4	8.8	2
	10:1	40		15.4	8.2	7.6	7.3	6.7	6.1	5.7	5.5	5.1	
J 3/4	5:1	20	1,500	38	30.0	28.0	27.0	24.7	23.3	22.3	21.6	20.5	1
	5:1	40		28.7	22.0	20.3	19.4	17.3	16.2	15.3	14.7	13.7	2
J1	5:1	20	2,000	53.1	39.2	36.8	35.4	32.3	30.5	29.2	28.3	26.8	3
	10:1	40		33.1	23.2	21.7	20.9	19.2	17.5	16.7	16.1	15.2	
	6:1	24		113	79.0	73.0	70.0	63.0	58.0	56.0	53.0	50.0	
J 2	8:1	32	4,000	93	64.0	59.0	56.0	50.0	47.0	44.0	42.0	40.0	4
	12:1	48		73	49.0	45.0	43.0	39.0	35.0	33.0	31.0	29.0	
	5.33:1	16		424	294	267	251	231	214	203	194	181	
J 5	12:1	36	10,000	261	168	153	144	126	116	109	104	97	5
	24:1	72		191	114	103	96	85	75	68	64	59	
J 10	6:1	18	20,000	906	596	535	498	453	416	390	372	436	7
	12:1	36		584	365	329	308	268	245	229	218	202	
J 20	8:1	16	40,000	1973	1287	1154	1079	982	901	847	809	751	9
	16:1	32		1271	789	710	667	582	530	497	472	438	
J 25	9:1	18	50,000	1938	1526	1364	1273	1155	1057	991	945		10
	18:1	36		1215	935	841	787	685	624	583	554		
J 40	20:1	30	80.000	2557	1917	1698	1573	1377	1243	1156	1094		12

For RPM's not shown use the next slowest RPM. For speeds less than 50 RPM contact factory.

10. Determine Uni-Lift Running Load Proportion Factor: (f)

$$f = \frac{P_3}{(P \times N)}$$

P = Rated Capacity of Uni-lift

P₃ = Max. system running load N= Number of Uni-lifts

11. Determine Unit Running Torque: (T₁) (lb-in)

 $T_{1} = (T \times f) + T_{0}$

 $T_0 =$ No load torque from chart

- T = Running torque from chart
- **12**. Find the System Running Torque: (T_2) (lb-in)

$$T_2 = \frac{(I_1 \times N)}{e_1}$$

e₁ = System Arrangement Efficiency, see page 77

13. Find System Power:

System HP = $\frac{(T_2 \text{ x RPM})}{(63025 \text{ x e}_2)}$ e₂ = Reducer Efficiency, see page 77 RPM = Uni-Lift input shaft speed

14. Determine System Starting Torque:
$$(T_{s2})$$

 $((T_s \times f) + T_o) \times N$
 $T_{s2} = \frac{e_2}{e_2}$
 $T_c = Static torque from chart$

15. Determine Motor Starting Torque: (T_{sm}) (lb in)

$$T_{sm} = \frac{I_{s2}}{(R \times e_s)}$$

- R = Gear Reducer Ratio
- **16**. Determine Motor Running Torque: (T_{rm})

$$T_{\rm rm} = \frac{I_2}{(R \times e_1)}$$

- Select a motor with a power rating greater than HP requirement in step 13, a starting torque greater than T_{sm} requirement in step 15, and a motor running torque greater than T_{rm} in step 16. See motor chart page 64 for horsepower and torque ratings.
- Select system torque transmission equipment (reducer, mitre gear boxes, couplings, etc.) with ratings greater than the torque to be transmitted, see step 12 and system arrangements, page 77.
- Size shafting for system starting torque to be transmitted, see step 16, and Table B page 76.

H & J SERIES DUTY CYCLE (Table 6)

Uni-Lift Duty Limit at Full Rated Capacity and 80° F Ambient Temperature

MODEL	RATIO	TPI	L2 - DUTY LIMIT SERVICE FACTOR @ VARIOUS RPM INPUT SPEEDS								
and			50	115	172	345	600	870	1140	1725	2587
SIZE			RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM
H 1/4	5:1	20	870	412	291	164	107	79	64	46	34
	10:1	40	1380	678	475	263	169	130	105	76	55
H 1/2	5:1	20	429	205	145	85	54	40	32	24	18
	10:1	40	705	336	236	132	85	65	52	38	28
J 3/4	5:1	40	220	105	73	46	27	21	17	13	9
	5:1	20	201	97	67	44	25	19	15	11	7
J1	5:1	20	330	161	115	66	41	30	24	18	12
	10:1	40	508	243	172	94	61	46	39	28	17
	6:1	24	211	102	74	48	30	22	18	13	9
J 2	8:1	32	261	126	88	54	34	26	21	16	12
	12:1	48	340	164	117	67	45	34	27	20	15
	5.33:1	16	102	51	36	24	15	11	9	6	
J 5	12:1	36	172	85	60	36	24	17	15	11	
	24:1	72	201	98	75	45	31	24	19	15	
J 10	6:1	18	87	48	36	24	20	12	9	6	
	12:1	36	130	63	46	28	18	13	12	8	
J 20	8:1	16	72	36	26	17	11	8	6	4	
	16:1	32	117	57	41	27	16	12	10	7	
J 25	9:1	18	64	32	23	17	10	7	5		
	18:1	36	106	46	38	22	14	11	9		
J 40	20:1	30	81	39	29	17	12	9	8		

• Duty Limit Service factor (L₂) = Operating time allowed per hour. The numbers greater than 60 are theoretical values and exceed 100% duty, solely to provide base data for adjusting L₂.

• The L₂ values are based on Uni-Lifts loaded at rated capacity, operating in an ambient temperature of 80° F., with a maximum allowable temperature rise of 100° F.

- For ambient temperatures above 180° F or below -20° F, consult factory.
- · For speeds not shown, use the next fastest RPM value.
- 1. Determine Adjusted Duty Limit : D₂

When the unit load is at rated capacity, and the ambient temperature is at 80° F, the L_2 value from the table equals D_2 . If not, proceed to step 1A.

1A) For different temperature service, or a unit load less than rated capacity, use the following equation to determine the Adjusted Duty Limit Service Factor (D_2) .

$$D_2 = \frac{(180 - T_A) x P x L_2}{100 x P_2}$$

- L_2 = Duty Limit Service Factor (see Table 6)
- T_{A}^{2} = Ambient temperature (F°) P=Rated capacity (lbs.)
- P_{4}^{2} = Maximum running load per actuator (lbs.)

P = Rated capacity of the Uni-Lift

2. Determine if Duty Cycle is acceptable:

If $D_2 > = 60$ minutes, the application is rated for continuous duty. If $D_2 > = D_1$ then the application is acceptable.

If $D_2 < D_1$ then the duty cycle limit has been exceeded for this application. You must do one of the following: select larger size Uni-Lift, reduce load by adding additional Uni-Lifts, or reduce speed. If you reduce speed, you must recalculate V₁ and D₁ from the Technical Specifications page 32 steps 6 and 7.

EXAMPLE

A. Consider for an J-5 low ratio 5:33:1 operating in 120°F ambient temperature, 5,000 lbs. load, and 600 RPM, with a rise of 20 inches and 5 cycles per hour:

$$_{1} = \frac{(2 \text{ x Rise x C}_{h})}{V_{.}}$$

$$D_1 = \frac{(2 \times 20 \times 3)}{37.5}$$

Duty time per hour = 5.33 minutes per hour

D

 $D_2 = \begin{pmatrix} 180 - 100 \\ 100 \\ x \\ 5,000 \end{pmatrix}$ Duty cycle limit = 18 minutes per hour

Since D_2 is greater than D_1 the application is OK for the duty cycle limit.

LINEAR MOTION 800-323-9114 J-SERIES MACHINE SCREW ACTUATOR

The maximum ESL values in the chart above are based on a **2:1 factor of safety against column buckle**, and on a standard design with a top plate, or a rotating design travel nut. Increased load screw lengths are not shown where the slenderness ratio exceeds 400.

1. Determine extended screw length: (ESL)

The ESL is the distance in inches the load screw can extend from the housing. See layout page for the model selected to determine ESL.

2. Determine the adjusted screw length: (ASL)

The chart above is for a standard design top plate or the rotating design travel nut. For other design configurations you must adjust the ESL value using the F factor multiplier to determine the adjusted screw length.

ASL=ESL x F

3. **Select correct size Uni-lift:** On the chart above, draw a horizontal line to represent the maximum load (P₁). Using the set of ESL values that apply to your design (guided or unguided), draw a vertical line to represent the ESL or ASL. All of the Uni-Lift's above the point of intersection will be acceptable.

Screw lengths above the dotted line comply with AISC maximum slenderness ratio KL/r=200 specified for design and fabrication of structural steel buildings. This data is for reference only and is not a limiting factor, except as required.

DESIGN CONFIGURATION	F factor	Guided K factor	Unguided K factor
Standard Design Top Plate	1	0.65	1.3
Rotating Design Traveling Nut	1	0.65	1.3
Standard Design Clevis End	1.25	0.8	1.6
Keyed Design Top Plate	1.25	0.65	1.3
Keyed Design Clevis End	2	0.65	1.6

K=Column Factor L=Extended Screw Length (ESL) r =Radius of Gyration See Technical Specifications (Table 4) for r values
H-SERIES MACHINE SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)
L	5:1 20		0.024
Н	10:1	40	0.013
RATE	D CAPA	CITY	500 lbs.
Max I	nput Sp	eed	1725 rpm
Max S	Max Screw Stock		136 in.
Load Screw			1/2 in. dia. x .250 in. lead
Stop Nut Allowance		wance	N/A

LINEAR MOTION 800-323-9114

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: NOT AVAILABLE

TRANSLATING

H1/4 - 1/4 TON

UNI-LIFT. H1/2 - 1/2 TON

LINEAR MOTION
800-323-9114H-SERIES MACHINE
SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	5:1 20		0.026			
Н	10:1	40	0.015			
RATE	D CAPA	CITY	1,000 lbs.			
Max I	nput Sp	eed	1725 rpm			
Max S	ax Screw Stock		ax Screw Stock		136 in.	
Load Screw			5/8 in. dia. x .250 in. lead			
Stop Nut Allowance			N/A			

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: NOT AVAILABLE

H-1/2-U-T

1.188

TRANSLATING

J-SERIES MACHINE SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	5:1	20	0.026			
Н	5:1	40	0.021			
RATE	D CAPA	CITY	1,500 lbs.			
Max I	nput Sp	eed	2587 rpm			
Max S	Screw S	tock	136 in.			
Load	Load Screw		5/8 in. dia. x .125 in. lead (40)			
Load Screw			5/8 in. dia. x .250 in. lead (20)			
Stop Nut Allowance			N/A			

LINEAR MOTION 800-323-9114

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.

INVERTED J-3/4-I-T

UPRIGHT J-3/4-U-T

TRANSLATING & KEYED

UNI-LIFT.

J3/4 - 3/4 TON

0.75 O - 1/2-20 UNF-2A 2.31 DIA. TRAVEL -TRAVEL 2.38 - 0.54

TOP PLATE AND CLEVIS END OPTIONS

POSITION "B"

POSITION "A"

TRAVEL NUT Position B TRAVEL NUT Position A

TRAVEL NUT POSITION B TRAVEL NUT Position A

TRAVEL NUT POSITION A TRAVEL NUT POSITION B

J-SERIES MACHINE SCREW ACTUATOR

R J10 - 10 TON

4.56 -1.53 2.81 - 3.50 CLOCKWISE ROTATION RAISES LOAD \oplus \oplus Æ Ħ - 1.000 DIA. 7.63 9.00 ł đ B 3.010 Æ đ ₽ 1/4 X 1/8 X 1 3/8 LG. KEYWAY 2.56 3.25 \oplus € 5.63 0.69 DIA 4 HOLES 7.00

REF.	GEAR RATIO	GEAR TURNS TORQUE REQUIRED TO RATIO /INCH LIFT 1 LB (Ib-in)				
L	6:1	18	0.046			
Н	12:1	36	0.029			
RATE	D CAPA	CITY	20,000 lbs.			
Max I	Input Sp	eed	1725 rpm			
Max S	lax Screw Stock		Screw Stock		226 in.	
Load Screw			1 3/4 in. dia. x .333 in. lead			
Stop Nut Allowance			1 1/4 in.			

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: ADD 3/8 INCHES TO JACK HOUSING.

TRANSLATING & KEYED

INVERTED J-10-I-T

TOP PLATE AND CLEVIS END OPTIONS

LINEAR MOTION 800-323-9114

10.50 5.25 1.47 _ 3.25 4.25 CLOCKWISE ROTATION RAISES LOAD \odot \oplus F - 1.125 DIA. 9.00 11.00 đ þ 3.675 Æ đ ₽ 1/4 X 1/8 X 1 3/8 LG KEYWAY 3.63 4.63 \odot \oplus 6.50 1.06 DIA 4 HOLES 8 50

J-SERIES MACHINE SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	8:1 16		0.050			
Н	16:1	32	0.032			
RATE	D CAPA	CITY	40,000 lbs.			
Max I	nput Sp	eed	1725 rpm			
Max S	x Screw Stock		Aax Screw Stock		224 in.	
Load	Load Screw		2 1/2 in. dia. x .500 in. lead			
Stop Nut Allowance			1 1/2 in.			

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: ADD 0 INCHES TO JACK HOUSING.

TRANSLATING & KEYED

INVERTED J-20-I-T

1.750

1.38

TOP PLATE AND CLEVIS END OPTIONS

0.50 1.00 MAAAAAAA 7.00 DIA.

TRAVEL NUT POSITION A

J-SERIES MACHINE SCREW ACTUATOR

UNI-LIFT. J25 - 25 TON

LINEAR MOTION 800-323-9114

10 50

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	9:1 18		0.039			
Н	18:1	36	0.024			
RATE	D CAPA	CITY	50,000 lbs.			
Max I	nput Sp	eed	1450 rpm			
Max S	lax Screw Stock		223 in.			
Load Screw			2 3/4 in. dia. x .500 in. lead			
Stop Nut Allowance			1 3/4 in.			

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.

5.Customer is responsible for providing positive stops at ends of travel. 6. KEYED JACKS: ADD 0 INCHES TO JACK HOUSING.

TRANSLATING & KEYED

INVERTED J-25-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION B

TRAVEL NUT POSITION A

J-SERIES MACHINE SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)
L	20:1	30	0.032
RATE	D CAPA	CITY	80,000 lbs.
Max	nput Sp	eed	1450 rpm
Max S	Screw S	tock	222 in.
Load Screw			4 1/4 in. dia. x .667 in. lead
Stop Nut Allowance			2 1/2 in.

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. KEYED JACKS: ADD 0 INCHES TO JACK HOUSING.

UPRIGHT J-40-U-T

11.00 DIA

TRANSLATING & KEYED

INVERTED J-40-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT POSITION "B"

B-SERIES BALL SCREW ACTUATOR

UNI-LIFT FEATURES & BENEFITS

Interchangeability. B-Series ball screw actuators are available in 1 ton through 100 ton capacities, and are directly interchangeable with competitive units.

Superior Performance

Uni-Lift Ball Screw Actuators and systems provide smooth, fast operation, high cycle reliability, and rugged construction to provide an affordable choice for a wide variety of applications.

Synchronized Travel

Uni-Lift Ball Screw Actuators require less input horsepower. These actuators are well suited for multi-unit synchronized systems.

"V" Threaded Screw End

Easy mounting of optional screw end accessories or customer connection, insures better alignment.

LINEAR MOTION 800-323-9114

Bearing journal on end of load screw for rotating jacks provides better column stability.

High Strength Rolled Formed Ball Thread Load Screws

- Provides 95% efficiency for minimum input force to position loads.
- Ball Screw is rolled and hardened for strength and wear resistance.

Tapered Roller Bearings

- Provides total support of the gear nut and worm shaft for thrust and radial forces.
- Better design bearing arrangement with upper and lower thrust bearings located in the main housing and mounted directly on the gear nut for full support under any loading conditions (vertical or horizontal).

High Strength Gearing

- Precision formed and finished worm gear sets.
- All gearing is designed in accordance with established American Gear Manufacturing Standards.
- Precision gearing provides greater efficiency and allows higher input speeds.

Rugged Housings

- Manufactured from high grade iron and steel alloys designed to withstand the most severe applications.
- Low closed height design saves space, reduces weight, and allows these ball screw actuators to fit into tight areas.

INEAR MOTION
800-323-9114B-SERIES BALL
SCREW ACTUATOR

B-SERIES TECHNICAL SPECIFICATIONS (Table 7)

MODEL TYPE AND SI	ZE	B1	B2.5	B5	B10	B20	B30	B50	B75	B100
CAPACITY IN POUNDS	(P)	2,000	5,000	10,000	20,000	40,000	60,000	100,000	150,000	200,000
DIA. OF LOAD SCREW	1	0.75	1.0	1.5	1.5	2.25	3.0	4.0	4.0	4.0
LEAD OF SCREW		0.500	0.250	0.474	0.474	0.500	0.666	1.0	1.0	1.0
GEAR CENTERS		1.504	1.750	2.188	2.598	2.875	3.750	5.313	6.000	7.500
	LOW	5:1	6:1	6:1	8:1	8:1	102/3:1	102/3:1	102/3:1	12:1
GLAR RATIO	HIGH	10:1	24:1	24:1	24:1	24:1	32:1	32:1	32:1	36:1
(TPI) TURNS OF INPUT	LOW	10	24	12.66	16.88	16	16	10.66	10.66	12
SHAFT FOR 1" OF RISE	HIGH	20	96	50.66	50.66	48	48	32	32	36
TORQUE REQUIRED TO	LOW	0.024	0.008	0.019	0.015	0.016	0.017	0.025	0.024	0.023
LIFT ONE POUND (Ib-in) (Tp)	HIGH	0.014	0.003	0.007	0.008	0.008	0.009	0.014	0.012	0.013
	LOW	1.4	4	14	13	27	21	40	107	128
	HIGH	2	1.5	5	4	7	5	10	24	50
NO LOAD TORQUE (Ib-in)	(To)	4	5	12	18	36	48	96	156	204
MAXIMUM INPUT RPM		1800	1800	1800	1800	1800	1200	1200	1200	1200
APPROXIMATE WEIGHT IN	0" TRAVEL	2.3	17	35	50	85	220	340	590	960
POUNDS	PER INCH	0.07	0.6	0.6	0.8	1.5	2.4	2.8	4.6	4.6
RADIUS OF GYRATION (r)	0.154	0.205	0.285	0.285	0.463	0.620	0.835	0.835	0.835

1. Complete the Uni-Lift Selection Guide located in the inside front cover.

2. Determine the maximum load on one actuator: P_1

$$P_1 = \frac{P_2}{N}$$

P₂ = Total system load (lbs.)

N = Number of actuators in the system

On multi-unit systems where load is not equally distributed, change P_1 to the greatest load supported by one unit.

- 3. Check Load Screw Column Capacity:
- If the load screw is in tension, select a Uni-Lift with a rated capacity equal to or greater than the maximum load (P_1) on one actuator. Go to step 4.
- If the load screw is in compression, use the calculation steps on page 50 to determine the maximum permissible Extended Screw Length, (ESL). Select a Uni-Lift that has a load screw column length capacity equal to or greater than the length required for the load.
- 4. Determine the desired load screw velocity (in./min.): (V_d)

$$V_d = \frac{\text{Rise}}{t_2}$$

Rise = One way travel under load (in.) t_2 = Required one way travel time (min.)

5. Determine Desired Input Speed: (RPM_d) $RPM_d = TPI \times V_d$

TPI = Turns of the input shaft for 1 inch of rise. (See technical specification table 7.)

6. Determine Load Screw Velocity: (V)

From the catalog data, select the drive equipment with an output speed close to the desired input speed (RPM_d). Use the output speed to recalculate the actual load screw velocity (V).

$$V = \frac{RPM}{TPI}$$

7. Check the Duty Limit of the actuator:

$$D_1 = \frac{(2 \times \text{Rise} \times C_h)}{V}$$

 D_1 = Duty time per hour

 $C_{h} = Cycles per hour$

Determine if D_1 is equal to or greater than D_2 . If D_2 is less than D_1 reduce the input speed to the actuator, or reduce the load per actuator by adding more actuators to the system.

 D_2 = Duty Limit (see page 49 for calculations)

Motor Sizing:

Once you have determined the motor horsepower, you need to calculate the Motor Brake Torque. All ball screw jacks and systems must be supplied with a brake. This is necessary to stop the jack and also to hold the position. Stop Nuts are to be used only for emergencies. They are available as an option.

The following is a QUICK ESTIMATE FOR MOTOR SIZING FOR A ONE ACTUATOR SYSTEM. For detailed motor sizing and torque requirements on single or multi-unit systems, skip steps 8 and 9, and go to step 10.

8. Estimate the Input Torque T_e (lbs/in): T_e = T_n x P₃

 T_p = Torque required to lift one pound (see table 4 for T_p values.) P_3 = Maximum system running load.

9. Estimate Uni-Lift Horsepower: HP_e

ŀ

$$HP_{e} = \frac{(T_{e} \times RPM)}{63025}$$

B-SERIES BALL CREW ACTUATOR

UNI-LIFT

B-SERIES MOTOR SIZING AND TOROUE CALCULATIONS (Table 8)

MODEL	GEAR	Turns	Rated				UNIT INPL	JT TORQUI	e at rate	d capacit	Υ		NO
No.	RATIO	per	cap	STATIC	ATIC T = RUNNING TORQUE (Ib-in) at VARIOUS RPM (Theoretical)								LOAD
		inch	(lbs)	TORQUE	50	115	172	345	600	870	1140	1725	TORQUE
		TPI	Р	Ts	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	То
B-1	5:1	10	2,000	49	44	43	42	41	40	40	39	38	3
	10:1	20		29	26	25	24	23	22	22	21	21	
B 2.5	6:1	24	5,000	41	37	36	35	34	33	33	32	32	5
	24:1	96		17	14	13	13	12	11	11	10	10	
B 5	6:1	12.66	10,000	186	170	167	164	160	156	154	152	150	12
	24:1	50.66		71	59	57	54	51	48	47	45	43	
B 10	8:1	16.88	20,000	302	269	262	256	247	240	236	233	229	18
	24:1	50.66		154	125	118	112	105	98	94	91	87	
B 20	8:1	16	40,000	628	561	546	533	516	502	493	487	479	36
	24:1	48		313	254	242	230	215	202	194	189	181	
B 30	10 2/3:1	16	60,000	987	864	838	815	784	761	746	736		48
	32:1	48		520	408	384	363	335	312	298	289		
B 50	10 2/3:1	16	100,000	2519	2149	2105	2010	1929	1870	1835	1814		96
	32:1	48		1361	1017	948	887	811	755	722	631		
B 75	10 2/3:1	10.66	150,000	3604	3132	3036	2952	2846	2769	2723	2335		156
	32:1	32		1781	1384	1303	1232	1141	1074	1035	1010		
B 100	12:1	12	200,000	4622	3844	3696	3567	3413	3307	3248	3212		204
	36:1	48		2568	1837	1697	1575	1429	1327	1271	1236		

For RPM's not shown use the next slowest RPM. For speeds less than 50 RPM contact factory. 10.

$$f = \frac{P_3}{(P \times N)}$$

P = Rated Capacity of Uni-lift

- P₃ = Max. system running load N= Number of Uni-lifts
- **11**. Determine Unit Running Torque: (T₁) (lb-in)

 $T_{1} = (T x f) + T_{o}$

- $T_0 =$ No load torque from chart
- T = Running torque from chart
- **12**. Find the System Running Torque: (T_2) (lb-in) $(T_1 \times N)$

$$T_2 = - e_1$$

e₁ = System Arrangement Efficiency, see page 77

e.

System HP =
$$\frac{(T_2 \text{ x RPM})}{(63025 \text{ x } e_2)}$$

= Reducer Efficiency, see page 77

RPM = Uni-Lift input shaft speed

14. Determine System Starting Torque:
$$(T_{s2})$$

 $((T_s x f) + T_o) x N$
 $T_{s2} = \frac{e_2}{e_2}$

- T_c = Static torque from chart
- **15**. Determine Motor Starting Torque: (T_{sm}) (lb in) т

$$T_{sm} = \frac{T_{s2}}{(R \times e_2)}$$

R = Gear Reducer Ratio

16. Determine Motor Running Torque:
$$(T_{rm})$$

$$m = \frac{1}{(R \times e_1)}$$

- Select a motor with a power rating greater than HP requirement in step 13, a starting torque greater than T_{sm} requirement in step 15, and a motor running torque greater than T_{rm} in step 16.
- Select system torque transmission equipment (reducer, mitre gear boxes, couplings, etc.) with ratings greater than the torque to be transmitted, see step 12 and system arrangements, page 77.
- Size shafting for system starting torque to be transmitted, see step 16, and Table B page 76.
- 17. Select a Brake Size (required for all ball screw jack applications):

$$I_{b} = \frac{C}{TPI x d x R} \quad x \quad \frac{(f x T_{hb} x N)}{R}$$

C = Motor brake factor

 R_1 = Reducer ratio

 T_{b} = Motor brake torque T_{hb} = Hold torque (see technical data) d = Stopping distance N = Number of Uni-Lifts in the system

C Factor For Motor Brake (ft.-lbs.)

Motor	1140	1725	Motor	1140	1725
1/4	3.2	4.1	3	38	66.5
1/3	4	4.9	5	48.3	87.4
1/2	5.1	6.1	7 1/2	69.4	112
3/4	7.89	9.2	10	126	146
1	9.18	17.8	15	268	273
1 1/2	11.3	21.6	20	306	315
2	29.5	25.6	25	548	596

UNI-LIFT.

LINEAR MOTION 800-323-9114

B-SERIES BALL

B SERIES DUTY CYCLE (Table 9)

Uni-Lift Duty Limit at Full Rated Capacity and 80° F Ambient Temperature

MODEL	RATIO	TPI		L2 - [DUTY LIMIT	SERVICE F	Actor @ V	ARIOUS RP	m input s	PEEDS	
and			50	115	172	345	600	870	1140	1725	2587
SIZE			RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM	RPM
B-1	5:1	10	553	268	191	108	69	52	42	30	22
	10:1	20	584	303	223	134	90	70	58	43	32
B-2.5	6:1	24	575	293	188	103	63	46	37	26	18
	24:1	96	1022	520	353	203	132	101	83	61	46
B-5	6:1	12.66	351	220	115	62	38	28	22	15	
	24:1	50.66	658	417	227	129	84	63	52	38	
B-10	8:1	16.88	252	158	84	46	29	21	17	12	
	24:1	50.66	373	239	132	76	50	38	31	23	
B-20	8:1	16	190	120	63	35	22	16	12	9	
	24:1	48	284	181	100	58	38	29	24	17	
B-30	10 2/3:1	16	185	117	63	35	22	16	12		
	32:1	48	261	172	96	56	38	29	24		
B-50	10 2/3:1	10.66	105	66	36	20	13	9	7		
	32:1	32	143	96	54	32	22	17	14		
B-75	10 2/3:1	10.66	110	71	36	21	13	9	8		
	32:1	32	177	116	65	38	25	19	16		
B-100	12:1	12	130	82	46	26	17	12	10		
	36:1	36	185	124	71	43	29	23	18		

Duty Limit Service factor (L₂) = Operating time allowed per hour. The numbers greater than 60 are theoretical values and exceed 100% duty, solely to provide base data for adjusting L₂.

• The L₂ values are based on Uni-Lifts loaded at rated capacity, operating in an ambient temperature of 80° F., with a maximum allowable temperature rise of 100° F.

• For ambient temperatures above 180° F or below -20° F, consult factory.

· For speeds not shown, use the next fastest RPM value.

1. Determine Adjusted Duty Limit : D₂

When the unit load is at rated capacity, and the ambient temperature is at 80° F, the L_2 value from the table equals D_2 . If not, proceed to step 1A.

1A) For different temperature service, or a unit load less than rated capacity, use the following equation to determine the Adjusted Duty Limit Service Factor (D_2) .

$$D_2 = \frac{(180 - T_A) \times P \times L_2}{100 \times P_A}$$

 L_2 = Duty Limit Service Factor (see Table 9) T_A = Ambient temperature (F°) P=Rated capacity (lbs.) P_4 = Maximum running load per actuator (lbs.)

 P^{4} = Rated capacity of the Uni-Lift

2. Determine if Duty Cycle is acceptable:

If D_2 = 60 minutes, the application is rated for continuous duty. If D_2 = D_1 then the application is acceptable.

If $D_2^2 < D_1$ then the duty cycle limit has been exceeded for this application. You must do one of the following: select larger size Uni-Lift, reduce load by adding additional Uni-Lifts, or reduce speed. If you reduce speed, you must recalculate V₁ and D₁ from the Technical Specifications page 47 steps 6 and 7.

EXAMPLE

Duty time

A. Consider for an B-10 low ratio 8:1 operating in 100°F ambient temperature, 10,000 lbs. load, and 1725 RPM, with a rise of 30 inches and 25 cycles per hour:

$$D_{1} = \frac{(2 \text{ x Rise x C}_{h})}{V_{1}}$$
$$D_{1} = \frac{(2 \text{ x 30 x 25})}{102.2}$$
per hour = 14.76 minutes per hour
$$D_{2} = \frac{(180 - 60) \text{ x 20,000 x 23}}{100 \text{ x 10,000}}$$

Duty cycle limit = 55.2 minutes per hour

Since D_2 is greater than D_1 the application is OK for the duty cycle limit.

UNI-LIFT.)-

The maximum ESL values in the chart above are based on a **2:1 factor of safety against column buckle**, and on a standard design with a top plate, or a rotating design travel nut. Increased load screw lengths are not shown where the slenderness ratio exceeds 400.

1. Determine extended screw length: (ESL)

B-SERIES BALL

The ESL is the distance in inches the load screw can extend from the housing. See layout page for the model selected to determine ESL.

2. Determine the adjusted screw length: (ASL)

The chart above is for a standard design top plate or the rotating design travel nut. For other design configurations you must adjust the ESL value using the F factor multiplier to determine the adjusted screw length. ASL=ESL x F **3.** Select correct size Uni-lift: On the chart above, draw a horizontal line to represent the maximum load (P_1). Using the set of ESL values that apply to your design (guided or unguided), draw a vertical line to represent the ESL or ASL. All of the Uni-Lift's above the point of intersection will be acceptable.

Screw lengths above the dotted line comply with AISC maximum slenderness ratio KL/r=200 specified for design and fabrication of structural steel buildings. This data is for reference only and is not a limiting factor, except as required.

F = Column Factor Multiplier

DESIGN CONFIGURATION	F factor	Guided K factor	Unguided K factor
Standard Design Top Plate	1	0.65	1.3
Rotating Design Traveling Nut	1	0.65	1.3
Standard Design Clevis End	1.25	0.8	1.6
Keyed Design Top Plate	1.25	0.65	1.3
Keyed Design Clevis End	2	0.65	1.6

K=Column Factor L=Extended Screw Length (ESL) r =Radius of Gyration See Technical Specifications (Table 7) for r values

UNI-LIFT B1 - 1 TON

B-SERIES BALL SCREW ACTUATOR

REF.	GEAR TURNS RATIO /INCH		TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	5:1 10		0.024			
Н	10:1 20		0.014			
RATE	D CAPA	CITY	2,000 lbs.			
Max I	Input Sp	eed	1800 rpm			
Max S	Max Screw Stock		233 in.			
Load	Screw		.75 in. dia. x .500 in. lead			
Stop	Nut Allo	wance	.75 in.			

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

TRANSLATING & KEYED

B-SERIES BALL SCREW ACTUATOR

UNI-LIFT. B2.5 - 2.5 TON LINEAR MOTION 800-323-9114

7 00

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	6:1 24		0.008			
Н	24:1 96		0.003			
RATE	D CAPA	CITY	5,000 lbs.			
Max I	Max Input Speed 1800 rp					
Max S	Screw S	tock	230 in.			
Load Screw			1 in. dia. x .250 in. lead			
Stop	p Nut Allowance .75 in.					

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

ESL + 5.26

TRAVEL NUT

POSITION "B"

TRANSLATING & KEYED

INVERTED B-2-I-T

- 0.750

INVERTED B-2-I-R

1.50 SQ.

0.27 DIA. THRU.

ON A 2.75 DIA. B.C. 4 PLACES @ 90 j APART

0.750 DIA.

TRAVEL

0.75

TOP PLATE AND CLEVIS END OPTIONS

4.13 -

ESL

UNI-LIFT B5 - 5 TON

B-SERIES BALL SCREW ACTUATOR

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	6:1 12.66		0.008			
Н	24:1 50.66		0.003			
RATE	D CAPA	CITY	10,000 lbs.			
Max I	Input Sp	eed	1800 rpm			
Max S	Max Screw Stock		227 in.			
Load	Screw		1 1/2 in. dia. x .474 in. lead			
Stop	Nut Allo	wance	1.75 in.			

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

TRANSLATING & KEYED

B-SERIES BALL SCREW ACTUATOR

UNI-LIFT B10 - 10 TON

LINEAR MOTION 800-323-9114

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)
L	8:1	16.88	0.015
Н	24:1 50.66		0.008
RATE	D CAPA	CITY	20,000 lbs.
Max I	nput Sp	eed	1800 rpm
Max S	Screw S	tock	227 in.
Load Screw			1 1/2 in. dia. x .474 in. lead
Stop	Nut Allo	wance	1.75 in.

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

INVERTED B-10-I-T

UNI-LIFT B20 - 20 TON

B-SERIES BALL SCREW ACTUATOR

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (lb-in)			
L	8:1 16		0.016			
Н	24:1 48		0.008			
RATE	D CAPA	CITY	40,000 lbs.			
Max I	nput Sp	eed	1800 rpm			
Max S	Max Screw Stock		223 in.			
Load	Screw		2 1/4 in. dia. x .500 in. lead			
Stop	Nut Allo	wance	2 in.			

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

TRANSLATING & KEYED

INVERTED B-20-I-T

B-SERIES BALL SCREW ACTUATOR

UNI-LIFT. **B30 - 30 TON**

2.19 7.00 5.12 3.75 CLOCKWISE ROTATION RAISES LOAD \oplus \oplus đ Ð - 1.375 DIA. 11.00 - -13.75 Ð D 3.750 ₽ £ 5/16 X 5/32 X 2.0 LG KEYWAY 3.75 5.12 ⊕ \odot 7.50 1.38 DIA 4 HOLES 10.25

14 00

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)			
L	10 ² /3:1 16		0.017			
Н	32:1 48		0.009			
RATE	D CAPA	CITY	60,000 lbs.			
Max	Input Sp	eed	1200 rpm			
Max	Screw S	tock	219 in.			
Load Screw			3 in. dia. x .667 in. lead			
Stop	Nut Allo	wance	3 in.			

LINEAR MOTION 800-323-9114

NOTES:

1. Load screw or nut must be secured to produce linear travel.

- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

TRANSLATING & KEYED

INVERTED B-30-I-T

TOP PLATE AND CLEVIS END OPTIONS

POSITION "B"

POSITION "A"

UNI-LIFT) B50 - 50 TON

LINEAR MOTION
800-323-9114B-SERIES BALL
SCREW ACTUATOR

REF.	GEAR RATIO	GEARTURNSTORQUE REQUIRED TORATIO/INCHLIFT 1 LB (lb-in)			
L	10.66:1 10 2/3		0.025		
Н	32:1 32		0.014		
RATE	ATED CAPACITY		100,000 lbs.		
Max	Input Sp	eed	1200 rpm		
Max 3	Max Screw Stock		215 in.		
Load	Screw		4 in. dia. x 1 in. lead		
Stop	Nut Allo	wance	3 in.		

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

INVERTED B-50-I-T

TRANSLATING & KEYED

B-SERIES BALL SCREW ACTUATOR

12.0 -70 - 5.0 -- 4.4 -CLOCKWISE ROTATION RAISES LOAD 1.750 DIA. E ₽ ł 23.0 6 000 3/8 X 3/16 X 2 3/4 LG С **KEYWAY** 19.0 C7.5 9.5 10.0 2.13 DIA. THRU 4 PLACES 14 0

		-	
REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (Ib-in)
L	10 ² /3:1 10.66		0.024
Н	32:1	32	0.012
RATE	D CAPA	CITY	150,000 lbs.
Max I	nput Speed		1200 rpm
Max S	Screw S	tock	206 in.
Load	Screw		4 in. dia. x 1 in. lead
Stop	Nut Allo	wance	4 in.

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5.Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

UPRIGHT B-75-U-T -5.50 1.50 9.50 DIA 60 -TRAVEL 9 \odot ä 200 1 7.00 DIA. 4.00 11.81 22.53 TRAVEL + 0.19 26.53 CLOSED

POSITION "B"

TRANSLATING & KEYED

UNI-LIFT.

B75 - 75 TON

INVERTED B-75-I-T

TOP PLATE AND CLEVIS END OPTIONS

TRAVEL NUT Position "A' 800-323-9114

LINEAR MOTION

UNI-LIFT. B100 - 100 TON

B-SERIES BALL SCREW ACTUATOR

REF.	GEAR RATIO	TURNS /INCH	TORQUE REQUIRED TO LIFT 1 LB (lb-in)			
L	12:1 12		0.023			
Н	36:1 36		0.013			
RATE	D CAPA	CITY	200,000 lbs.			
Max I	nput Sp	eed	1200 rpm			
Max S	Max Screw Stock		206 in.			
Load	Screw		4 in. dia. x 1 in. lead			
Stop	Nut Allo	wance	4 in.			

NOTES:

- 1. Load screw or nut must be secured to produce linear travel.
- 2. Dimensions are for reference only and will change with the addition of boots, attachments, and accessories.
- 3. Boots and boot adaptors are available. (Pages 74-75)
- 4. Travel must be adjusted to allow for mounting structure on inverted actuators.
- 5. Customer is responsible for providing positive stops at ends of travel.
- 6. CAUTION: BALL SCREW JACKS ARE NON-LOCKING, BRAKES MUST BE USED TO HOLD SCREW IN POSITION.

TRANSLATING & KEYED

INVERTED B-100-I-T

TOP PLATE AND CLEVIS END OPTIONS

POSITION "B"

TRAVEL NUT POSITION "A"

UNI-LIFT. DOUBLE CLEVIS

CLEVIS DIMENSIONS

MODEL SIZE	Width of Flat A	Length of Flat B	End of Clevis to Centerline of Pin Hole C	Diameter of Pin Hole D	Diameter of Clevis End E	Diameter of Clevis End (Tube End) F
M-2.5	0.75	1.50	0.75	0.41	1.00	1.38
M-5	1.00	2.00	1.00	0.66	1.50	2.13
M-10	1.25	2.50	1.25	0.78	1.75	2.50
M-15	1.50	2.50	1.25	0.91	2.25	2.50
M-20	1.75	2.75	1.38	1.03	2.50	3.13
J-2	0.75	1.50	0.75	0.41	1.00	1.38
J-5	1.00	2.00	1.00	0.66	1.50	2.13
J-10	1.25	2.50	1.25	0.78	1.75	2.50
J-20	1.75	2.75	1.38	1.03	2.50	3.13
B-2.5	0.75	1.50	0.75	0.41	1.00	1.38
B-5	1.00	2.00	1.00	0.66	1.50	2.13
B-10	1.25	2.50	1.25	0.78	1.75	2.50

JACK DIMENSIONS

MODEL SIZE	Closed Height Pin to Pin G	Extended Height Pin to Pin J	Height of Uni-Lift Housing K	Length from Pin Hole (Tube End) to Housing at 0" Travel L	Length from Pin Hole (Tube End) to Input Shaft at 0" Travel M	Maximum Travel / Extended Height at Rated Capacity
M-2.5	7.38 + Travel	G + Travel	4.44	1.18	3.25	14.8 / 37.0
M-5	10.06 + Travel	G + Travel	5.50	2.06	4.75	23.4 / 57.0
M-10	11.41 + Travel	G + Travel	5.68	2.34	5.16	24.5 / 62.0
M-15	12.91 + Travel	G + Travel	6.81	2.34	5.66	27.0 / 67.0
M-20	17.2 + Travel	G + Travel	7.56	2.69	6.63	32.4 / 82.0
J-2	7.00 + Travel	G + Travel	4.06	1.18	3.25	17.0 / 41.0
J-5	9.75 + Travel	G + Travel	5.18	2.06	5.00	23.6 / 57.0
J-10	12.56 + Travel	G + Travel	6.43	2.34	5.66	24.7 / 62.0
J-20	15.63 + Travel	G + Travel	8.56	2.69	7.32	33.2 / 82.0
B-2.5	9.25 + Travel	G + Travel	6.31	1.18	3.25	13.9 / 37.0
B-5	13.62 + Travel	G + Travel	9.04	2.06	4.75	21.7 / 57.0
B-10	14.79 + Travel	G + Travel	9.19	2.34	5.16	13.6 / 42.0

LINEAR MOTION 800-323-9114

DOUBLE CLEVIS COLUMN BUCKLE CHART

The Pin-to-Pin values in the chart above are based on a **2:1 factor of safety against column buckle** on a Double Clevis Uni-Lift. Increased load screw lengths are not shown where the slenderness ratio exceeds 400.

1. Determine Maximum Extended Height (J) The maximum extended height is the distance between the clevis pins, in the fully extended position. See table 10, page 60.

2. Determine the maximum unit load: (lbs.) (P_1)

$$P_1 = \frac{P_2}{N}$$

 P_2 = Total system load N = Number of Uni-lifts

On multi-unit systems where load is not equally distributed, change P_1 to the greatest load supported by one unit.

3. Check Column Buckle Chart:

On the chart above draw a horizontal line to represent the maximum load (P_1). Draw a vertical line to represent the maximum extended height (J). All of the Uni-Lift's above the point of intersection will have acceptable column capacity.

4. Select Correct Size Uni-Lift:

Follow the directions on the pages listed below for proper sizing of the Uni-Lift actuators:

- For M-Series Actuators see pages 12 14
- For J-Series Actuators see pages 32 34
- For B-Series Actuators see pages 47 49

The UNI-PAC electromechanical linear actuator conforms to the same high design principles as the standard "M" and "B" series jacks. The UNI-PAC design is available with load ratings from 2 1/2 tons through 20 tons. These units provide a compact, economical way to operate a single jack or multi-jack system. This design is ideal for double clevis actuators. The addition of our standard limit switch makes these units a complete self-contained actuator.

MOTORIZED ACTUATOR DIMENSIONS (for reducer & adaptor dimensions):

Jack Size	А	В	С	D	E	F	G	Н	J	Κ*	L *	M *	Ν*
M & B										Max.	Max.	Max.	Max.
Series										Length	Dia.	Length	Dia.
2.5	2.06	4.88	6.19	11.50	1.13	5.38	2.69	8.00	3.50	17	8	18	8
5	3.00	5.38	6.88	13.19	.63	5.38	2.69	8.69	4.00	17	8	18	8
10	3.75	6.62	8.01	16.26	2.00	8.50	4.25	10.76	4.63	18	10	23	10
20	4.13	8.00	8.50	16.82	1.25	8.50	4.50	11.07	5.88	21	10	24	10

* These dimensions account for the largest motors that fit on these actuators. For specific motor sizes, request actual dimensional information from the factory.

See the standard catalog page pertaining to the unit size required for complete jack dimensional information.

The reducer can be mounted on either side of the jack (L or R). The standard position is R4. The reducers can be rotated in 90° increments, i.e., R1, R2, R3, R4. When ordering a UNI-PAC actuator, always state the mounting position and motor requirements, if different than the standard 3/60/230/460 TEFC.

Standard options are available with motorized actuators, including boots, emergency stop nuts, clevis's, top plates, threaded ends, limit switches or other electronic position indicators.

LINEAR MOTION 800-323-9114 MOTORIZED

UNI-PAC "M" SERIES MOTORIZED ACTUATORS

Actuator	Actuator	Motor	Reducer	Dynamic	Travel			
Size	Ratio	Size	Model	Load	Rate			
		(H.P.)	Number	Capacity	Inches /			
				(lbs.)	Minute			
		1/2	R5	2,000				
	6:1 (L)	3/4	R5	3,000	15			
M-2.5		1	R5	4,000				
		3/4	R10	5,000	7 1/4			
	24:1 (H)	1/2	R5	5,000	3 3/4			
		1/2	R10	5,000	1 7/8			
		3/4		2,300				
		1	R5	3,100	22 1/2			
	6:1 (L)	1 1/2		4,700				
		3/4		4,500				
		1	R10	6,000	11			
M-5		1 1/2		9,000				
		3/4		6,500				
		1	R5	9,000	5 3/4			
	24:1 (H)	1 1/2		10,000				
		1/2	D10	7,000	2 3/4			
		3/4	RIU	10,000				
	8:1 (L)	5	R5	15,000	21 3/4			
M-10		3	R10	17,150	11			
	24:1 (H)	3	R5	20,000	7 1/4			
		2	R10	20,000	3 1/2			
	8:1 (L)	7 1/2	R5	21,300	21 3/4			
M-20		5	R10	28,000	11			
	24:1 (H)	3	R5	21,000	7 1/4			
		3	R10	24,000	3 1/2			

UNI-PAC "B" SERIES MOTORIZED ACTUATORS

Actuator	Actuator	Motor	Motor	Reducer	Dynamic	Travel
Size	Ratio	Size	Brake	Model	Load	Rate
		(H.P.)	Size	Number	Capacity	Inches /
			(lbsft.)		(lbs.)	Minute
	6:1 (L)	1/3	3	R5	2,000	15
		1/2	3		4,500	
B-2.5		1/2	3	R10	5,000	7 1/4
	24:1 (H)	1/2	3	R5	5,000	3 3/4
		1/2	3	R10	5,000	1 7/8
	6:1 (L)	3/4	6		4,000	
		1	6	R5	5,800	28
		1 1/2	10		8,000	
		3/4	6	R10	8,000	14 1/4
B-5		1	6		10,000	
	24:1 (H)	1/3	3		3,000	
		1/2	3	R5	6,000	7
		3/4	6		10,000	
		1/2	3	R10	10,000	3 1/2
	8:1 (L)	3	15	R5		21
B-10		2	10	R10	20,000	10 1/4
	24:1 (H)	2	10	R5		7
		1 1/2	10	R10		3 1/2
	8:1 (L)	5	15	R5		21 3/4
B-20		3	15	R10	40,000	11
	24:1 (H)	3	15	R5	J	7 1/4
		3	15	R10		3 1/2

Check column capacity for all applications. Motors are TEFC, 3/60/230/460 Volt. Above selections are for intermittent operation. Running time not to exceed 15 minutes unless duty cycle calculations are checked.

To order, use the standard actuator number matrix and substitute the reducer model number (bold print) for the motor adaptor part number, i.e., R5, R10. Also, add the mounting position, i.e., R4, L3, etc.

SYSTEM ACCESSORIES

UNI-LIFT MOTORS - NEMA C-FACE

- 230/460 Volts, 3 Phase.
- Totally Enclosed, Fan Cooled.
- Heavy Steel Frame.
- Ball Bearings.
- C-Face Less Base.

MOTOR CHART

Order	H.P.	R.P.M.	NEMA	Weight	Starting	Running	Х	Y
Number			Frame	(lbs.)	Torque	Torque	Dim.	Dim.
					(in. lbs.)	(in. lbs.)	(in.)	(in.)
2400231	1/4	1725	56C	18	30	9	9.38	4.50
2400232	1/4	1140	56C	19	36	13	9.38	4.50
2400233	1/3	1725	56C	20	45	12	9.38	4.50
2400234	1/3	1140	56C	21	53	18	9.38	4.50
2400235	1/2	1725	56C	22	63	18	9.38	4.50
2400236	1/2	1140	56C	23	74	27	9.38	4.50
2400237	3/4	1725	56C	25	105	27	9.38	4.50
2400238	3/4	1140	56C	32	116	40	11.30	4.50
2400239	1	1725	143TC	31	85	36	9.94	4.50
2400240	1	1140	145TC	37	122	54	11.25	5.25
2400241	1 1/2	1725	145TC	34	150	54	10.25	5.25
2400242	1 1/2	1140	145TC	40	134	84	11.25	5.25
2400243	2	1725	145TC	41	198	72	11.25	5.25
2400244	2	1140	184TC	65	252	108	13.94	6.00
2400245	3	1725	182TC	61	264	108	12.56	5.88
2400246	3	1140	213TC	105	409	162	15.56	7.44
2400247	5	1725	184TC	75	436	180	13.94	6.00
2400248	5	1160	215TC	133	783	270	16.68	7.44
2400249	7 1/2	1725	213TC	123	488	270	15.56	7.44
2400250	10	1725	215TC	138	732	360	16.58	7.44

For other configurations contact factory.

NOTE: When sizing motors, Uni-Lift suggests using only 80% or less of running torque.

LINEAR MOTION 800-323-9114

MOTOR ADAPTORS

Available for 1 ton through 25 ton Uni-Lifts.

- Designed to NEMA C-Face Standards.
- Direct couple motor to left or right hand actuator input shaft.
- All hardware provided, including coupling.

Actuator	Kit Order Number	Motor Frame	"A"	"B"	"C"	"D"	"E" (Ref.)
	2400177	56C	5/8				
J-1 B-1	2400178	143TC 145TC 182C 184C	7/8	3/16	6 1/2	6 9/32	4 23/32
	2400177	56C	5/8				
J-2	2400178	143TC 145TC 182C 184C	7/8	3/16	6 1/2	6 13/16	4 23/32
	2400179	56C	5/8				
J-5	2400180	143TC 145TC 182C 184C	7/8	3/16	6 1/2	6 25/32	4 11/16
	2400181	182TC 184TC 213C 215C	1 1/8	11/16	9	7 9/32	5 3/16
	2400182	56C	5/8				
	2400183	143TC 145TC 182C 184C	7/8	3/16	6 1/2	7 3/8	4 15/16
J-10	2400184	182TC 184TC 213C 215C	1 1/8	3/4	9	7 15/16	5 1/2
	2400186	56C	5/8				
J-20	2400187	143TC 145TC 182C 184C	7/8	3/16	6 1/2	8 13/16	5 1/4
5 20	2400188	182TC 184TC 213C 215C	1 1/8	3/4	9	8 23/32	5 17/32
	2400189	213TC 215TC	1 3/8				
	2400186	56C	5/8				
1-25	2400187	143TC 145TC 182C 184C	7/8	3/16	6 1/2	8 13/32	5 1/4
J-25 _	2400188	182TC 184TC 213C 215C	1 1/8	3/4	9	8 23/32	5 17/32
	2400189	2131C 215TC	1 3/8				

M & B SERIES MOTOR ADAPTOR DIMENSIONAL CHART

Actua	ator	Kit Order	Motor	А	С	D
		Number	Frame			
M-2.5	B-2.5		56 C	5/8	6 5/8	6 1/4
M-5	B-5	Request	56 C	5/8	6 5/8	7 1/4
M-10	B-10	from	184 C	7/8	6 5/8	8 1/4
M-15		Uni-Lift	184 C	7/8	6 5/8	8 1/4
M-20	B-20		182T C	1 1/4	91/4	9

SYSTEM ACCESSORIES

SYSTEM ACCESSORIES

UNI-LIFT ROTARY LIMIT SWITCHES

Kits Include:

Limit Switches in NEMA 4 Housing Mounting Adaptor Mounting Screws Coupling Pin

Note: Input shaft must be drilled per engineering print <u>89767.</u>

Specifications

- Limit Switches are available in three series: #360, #1440, and #4320.
- The series numbers relate to the maximum allowable input revolutions for each limit switch.
- You must calculate the input revolutions for your application and choose a limit switch that has the next higher capacity than required.
- Input revolutions to the limit switch equal the input revolutions to the Uni-Lift for the required load screw travel in one direction.

<u>Sizing</u>

To calculate the required number of revolutions, utilize the following formula:

R = TPI x Rise

TPI - Turns of the input shaft for 1 inch of rise. Rise - one way travel.

Example:

20 ton jack, 8:1 ratio, 72 inches of rise, TPI = 16

16 x 72 = 1152 turns

1152 turns is less than 1440, therefore, select a #1440 series limit switch. **SPDT Switches**

ACTUATOR SIZE (TON)	A (in.)
1*	3.303
2 & 2.5	3.303
5	3.272
10 & 15	3.273
20-25-30	3.368

NOTE: Contact factory when using Limit Switches on short travel applicatons, i.e., less than 3 inches.

* Only available with the B1 and J1 actuator.

115 VAC	15 AMPS
230 VAC	10 AMPS

Typical S.P.D.T. Switch Wiring Diagram

LINEAR MOTION

800-323-9114

The limit switch easily mounts onto either input shaft & counts the revolutions to allow accurate positioning.

Switch can easily be mounted in any one of these positions.

UNI-LIFT WORM GEAR REDUCERS

LINEAR MOTION 800-323-9114 SYSTEM <u>ACCESSORIES</u>

WORM GEAR REDUCER RATING TABLES

С	NEMA Flange	Uni-Lift	Ratio	172	25 RPM Inp	ut	114	40 RPM Inp	ut	Shipping Weight/
Flange	g-	Number		Ou	tput		Ou	tput		Oil Capacity
Models					Torque	Input		Torque	Input	
				RPM	(lbin.)	HP	RPM	(lbin.)	HP	
		2400931	5:1	345	181	1.10	228	212	0.84	13 lbs.
134A	56C	2400932	10:1	172	235	0.75	114	261	0.55	0.09 Gallons
		2400933	15:1	115	251	0.56	76	288	0.43	
		2400934	5:1	345	358	2.17	228	436	1.73	16 lbs.
184A	56C	2400935	10:1	172	415	1.72	114	501	1.36	0.11 Gallons
		2400936	15:1	115	472	1.51	76	540	1.13	
	56C	2400937	5:1	345	492	3.01	228	601	2.40	23 lbs.
214A	143TC, 145TC	2400941	10:1	172	621	2.01	114	776	1.64	0.13 Gallons
		2400942	15:1	115	663	1.52	76	826	1.23	
		2400949	5:1	345	723	4.47	228	915	3.67	33 lbs.
264A	182TC, 184TC	2400950	10:1	172	1260	3.91	114	1570	3.18	0.19 Gallons
		2400951	15:1	115	1110	2.51	76	1410	2.06	
		2400958	5:1	345	1820	11.1	228	2270	9.0	64 lbs.
324A	182TC, 184TC	2400959	10:1	172	2323	7.5	114	2820	5.8	0.33 Gallons
		2400960	15:1	115	2390	5.4	76	3020	4.4	
		2400967	5:1	345	2820	17.2	228	3500	13.8	84 lbs.
384A	182TC, 184TC	2400968	10:1	172	3510	11.2	114	4410	9.0	0.50 Gallons
		2400969	15:1	115	3750	8.4	76	4730	6.8	
454A	213TC, 215TC	2400976	10:1	172	5130	16.3	114	6400	13.2	112 lbs.
		2400977	15:1	115	5520	12.4	76	6880	10.1	0.9 Gallons

The above mechanical ratings are based on 2 hour duty cycles with equal shutdown time. For 30 minute duty, multiply table ratings by 1.5. For continuous duty, consult factory. Reducers are shipped dry. Use ISO grade 460 synthetic gear oil.

OUTER DIMENSIONS FOR SIMPLEX WORM GEAR REDUCERS

Model	NEMA Flange	Α	С	F	G	Н	J	К	L	Ν	S	Т	U	V	W	Х	Z
No.				Out-	Keyseat												
				put													
				Shaft													
1244	560	3 2/0	6 1/2	.625	3/16 X 1 1/4	2 15/14	3 1/0	1 2/22	1 222	6 1/2	2 1 8 7	5 2/0	11/22	1 656	1 2/14	687	2 250
134A	500	J 3/8	0 1/2	.624	LG	Z 15/10	J 1/8	4 3/32	1.555	0 1/2	2.107	J 3/8	11/32	1.050	4 3/10	.007	2.230
1044	540	2	6 1/2	.750	3/16 X 1 5/8	2	2 7/0	Б	1 750	7	2 075	6 7/0	10/00	2 250	5 5/0	075	2 750
184A	500	3 3/4	0 1/2	.749	LG	3	3 //8	5	1.750	/	2.075	0 //8	13/32	2.250	J 5/8	.075	2.750
2144	56C	1 1/0	6 1/2	.875	3/16 x 1 31/32	2 2/4	1 7/0	6	2 062	0 1/2	2 107	7 1/2	15/20	2 212	5 10/1/	562	2 000
214A	143TC, 145TC	4 1/8	0 1/2	.874	LG	J 3/4	4 //8	0	2.002	0 1/2	3.107	1 1/2	15/32	2.343	J 13/16	.502	3.000
2444	10070 10170	1	0	1.250	1/4 X 1 25/32	1 510	5 5 10	7 - 14 /	2 4 25	0	1 000	0.4/0	47/00	2 4 2 5	6	750	2 6 0 7
204A	1821C, 1841C	4 3/4	9	1.249	LG	4 5/8	J 5/8	/ //16	2.025	9	4.000	7 1/2	17/32	2.025	0 3/4	.750	3.007
0044	10070 10170	6	0	1.375	5/16 x 2 9/16	1	7	0 = 10	2 250	10 -10	4 750	10	47/00	2 042	7	1 1 25	1 275
324A	1821C, 1841C	0 1/4	9	1.374	LG	4 3/4	1 3/8	O 5/8	3.200	10 //8	4.750	10 3/4	17/32	3.002	1 3/8	1.125	4.375
0044		6 - 10	0	1.500	3/8 X 3 1/4	Ear	0	10	2 750	12	E 107	11		2 500	0	075	1 01 2
384A	1821C, 1841C	0 5/8	9	1.499	LG	D 3/8	8	IU 1/16	3.750	13 3/8	5.187	115/8	19/32	3.500	8 1/4	.875	4.812
	213TC 215TC	6 3/4	9	1.625	3/8 X 1 7/16	6 1/8	9 1/4	11 5/8	4 500	14 1/2	6 062	13 5/16	21/32	3 812	8 7/8	1 000	5 625
454A	21310, 21310	0 3/4	<i>'</i>	1.624	LG	0 1/0	2 1/4	11 5/6	1.500	1 1 1/2	0.002	10 3/10	21/32	0.012	0 //0	1.000	0.020

SYSTEMUNI-LIFTACCESSORIESMITRE GEAR BOXES

LINEAR MOTION 800-323-9114

Lightweight Aluminum Models AD-3, AD-4 & AD-5

Features:

- Lightweight aluminum housing resists corrosion and provides rigid gear and bearing support.
- Stainless steel shafts provide resistance to corrosion.
- Precision ball bearings accommodate higher operating speeds.
- Spiral bevel gearing assures low noise level at higher operating speeds.
- Factory lubricated for life to assure trouble free service.
- Universal mounting (5 surfaces) for maximum design flexibility.

Standard Units

Standard units may be inverted to reverse rotation. Input shaft can be rotated in either direction. Other styles and ratios are available upon request.

Rating Table - Selected by Torque

Mode No.	el	Orc No	der D.	Rati	0 T(@	Out orque 114	put Rati 0 RP	ng M	Inpu @ 1 RI	it H.P 140 PM	T	Out orque 172 ©	tput e Rati 25 RP	ng M	Input @ 1 ⁻ RP	: H.P 725 M	Shij V (II	pping wt. bs.)					
AD-3	3	215	680	1:1		19	94		3	.5		18	89		5.	2	8	.25					
AD-4	1	215	574	1:1		3	3		0	.6		3	32		0.	9		50					
AD-5	5	215	575	1:1		8	0		1	.4		7	'8		2.1			2					
Model No.	A	В	С	D	E	F	G	Н	I	J	к	L	м	N	0	Р	Q	R	S	T*	U*	V * Flat	W*
AD-3	0.8	3.00	5.00	10.00	1.50	3.000	.88	1/4	0.320	3.000	1.50	3.000	1.50	0.328	1.125	2.250	3.005 3.000	7.00	5.00	2.00	0.750 0.749	-	3/64 3/32
AD-4	0	1.385	1.975	3.947	0.656	1.312	.44	1/8	0.193	1.312	0.656	1.188	0.594	0.171	0.438	0.876	1.255 1.250	2.755	2.165	0.590	0.375 0.374	1/32 deep	-
AD-5	0.5	2.125	3.625	7.250	0.937	1.875	.50	1/8	0.265	1.875	0.937	1.875	0.937	0.265	0.687	1.375	2.005 2.000	4.750	3.250	1.500	0.625 0.624		3/16 3/32

* Identical for all 3 shafts.

UNI-LIFT MITRE GEAR BOXES

LINEAR MOTION 800-323-9114

Heavy Duty Models with Rugged Iron Housings

Features:

- **Rugged iron housing** designed for rigid gear and bearing support.
- **Tapered roller bearings** for endurance and strength.
- Double lip, spring loaded seals to keep lubricant in, keep dirt out.
- Universal mounting assures maximum design flexibility.
- Spiral bevel gearing for lower noise level and higher input speeds. (All models except M2)
- Use ISO 220 viscosity lube oil.

Model No.	Order No.	Ratio	Output Torque @1140	Input HP @1140	Max. Approvd.	Output Torq. @1725	Input HP @1725	A	В	С	D	E*	G	L	М	N	Р	Q*	R	S* Keyseat
			RPM	RPM	RPM	RPM	RPM													
M2	21600	1:1	83	1.5	2400	81	2.2	-	-	7 1/2	3 3/4	1 1/2	4 9/16	2 1/4	1 47/64	1 19/32	3 3/16	0.625 0.624	-	3/16 X 3/32 X 1 5/32
150	21701	1:1	600	11	3000	580	16	4 1/4	4 1/4	10 3/16	5 3/32	2	5 23/32	2 27/32	2 9/16	2 1/16	4 1/8	1.000 0.999	3/8 NC	1/4 X 1/8 X 1 17/32
66	21751	1:1	1670	30	2400	1650	46	4 1/2	4 1/2	12 1/4	6 1/8	2 1/2	8 15/32	3 7/16	2 15/16	2 13/16	5 5/8	1.251 1.250	1/2 NC	1/4 X 1/8 X 1 25/32
88	21851	1:1	3450	63	1725	3240	90	6 1/2	6 1/2	15 13/16	7 29/32	3	10 7/8	4 17/32	3 27/32	4 3/32	8 3/16	1.376 1.375	1/2 NC	5/16 X 5/32 X 2 5/16
800	21901	1:1	4930	90	1725	4750	132	6 1/2	6 1/2	16 3/32	8 3/64	31/16	11 15/32	4 19/32	3 27/32	4 3/32	8 3/16	1.499	1/2 NC	3/8 X 3/16 X 2 1/4
1010	21955	1:1	9481	170	1725	9039	250	8	8	21 1/2	10 3/4	4	15	5 1/4	4 3/4	4 3/4	9 1/2	2.000 1.998	1/2 NC	1/2 X 1/4 X 3 3/4

* Identical for all 3 shafts.

Torque ratings are mechanical, based upon continuous duty service. Output capacity is higher for intermittent duty (contact factory).

Units Shipped Dry - Shipping Weights (lbs.): 9, 25, 48, 88, 115 & 175 respectively.
SYSTEMLINEAR MOTION
800-323-9114ACCESSORIESFLEXIBLE JAW COUPLINGS

- Easy to assemble.
- Visual wear inspection.
- Max. angular offset 1°.
- Max. parallel offset 0.015 inches.
- Sintered iron j aws, open center polyurethane spider.
- Temperature range -30° to 160° F.

Model L099 Rated Torque 477 in-Ib Rated H.P. 13 @ 1725 RPM

	Hub Finish Bore +.001/000					
Item No.		Keyway		Keyway		
	A Dia.	Width x "T"	B Dia.	Width x "T"		
2486171	5/8	3/16 x .709	5/8	3/16 x .709		
2486172	5/8	3/16 x .709	3/4	3/16 x .837		
2486173	5/8	3/16 x .709	7/8	3/16 x .964		
2486174	5/8	3/16 x .709	1	1/4 x 1.114		
2486175	5/8	3/16 x .709	1 1/8	1/4 x 1.241		
2486176	5/8	3/16 x .709	1 1/4	1/4 x 1.367		
2486177	5/8	3/16 x .709	1 3/8	5/16 x 1.518		
2486178	3/4	3/16 x .837	3/4	3/16 x .837		
2486179	3/4	3/16 x .837	7/8	3/16 x .964		
2486180	3/4	3/16 x .837	1	1/4 x 1.114		
2486181	3/4	3/16 x .837	1 1/8	1/4 x 1.241		
2486182	3/4	3/16 x .837	1 1/4	1/4 x 1.367		
2486183	3/4	3/16 x .837	1 3/8	5/16 x 1.518		
2486184	7/8	3/16 x .964	7/8	3/16 x .964		
2486185	7/8	3/16 x .964	1	1/4 x 1.114		
2486186	7/8	3/16 x .964	1 1/8	1/4 x 1.241		
2486187	7/8	3/16 x .964	1 1/4	1/4 x 1.367		
2486188	7/8	3/16 x .964	1 3/8	5/16 x 1.518		
2486189	1	1/4 x 1.114	1	1/4 x 1.114		
2486190	1	1/4 x 1.114	1 1/8	1/4 x 1.241		
2486191	1	1/4 x 1.114	1 1/4	1/4 x 1.367		
2486192	1	1/4 x 1.114	1 3/8	5/16 x 1.518		
2486193	1 1/8	1/4 x 1.241	1 1/8	1/4 x 1.241		
2486194	1 1/8	1/4 x 1.241	1 1/4	1/4 x 1.367		
2486195	1 1/8	1/4 x 1.241	1 3/8	5/15 x 1.518		
2486196	1 1/4	1/4 x 1.367	1 1/4	1/4 x 1.367		
2486197	1 1/4	1/4 x 1.367	1 3/8	5/16 x 1.518		
2486198	1 3/8	5/16 x 1.518	1 3/8	5/16 x 1.518		

Model L095
Rated Torque 291 in-lb
Rated H.P. 8 @ 1725 RPM

	Hub Finish Bore +.001/000				
Item No.		Keyway		Keyway	
	A Dia.	Width x "T"	B Dia.	Width x "T"	
2486122	5/8	3/16 x .709	5/8	3/16 x .709	
2486123	5/8	3/16 x .709	11/16	3/16 x .773	
2486124	5/8	3/16 x .709	3/4	3/16 x .837	
2486125	5/8	3/16 x .709	13/16	3/16 x .900	
2486126	5/8	3/16 x .709	7/8	3/16 x .964	
2486127	5/8	3/16 x .709	15/16	1/4 x 1.051	
2486128	5/8	3/16 x .709	1	1/4 x 1.114	
2486129	5/8	3/16 x .709	1 1/16	1/4 x 1.178	
2486130	5/8	3/16 x .709	1 1/8	1/4 x 1.241	
2486139	3/4	3/16 x .837	3/4	3/16 x .837	
2486140	3/4	3/16 x .837	13/16	3/16 x .900	
2486141	3/4	3/16 x .837	7/8	3/16 x .964	
2486142	3/4	3/16 x .837	15/16	1/4 x 1.051	
2486143	3/4	3/16 x .837	1	1/4 x 1.114	
2486144	3/4	3/16 x .837	1 1/16	1/4 x 1.178	
2486145	3/4	3/16 x .837	1 1/8	1/4 x 1.241	
2486152	7/8	3/16 x .964	7/8	3/16 x .964	
2486153	7/8	3/16 x .964	15/16	1/4 x 1.051	
2486154	7/8	3/16 x .964	1	1/4 x 1.114	
2486155	7/8	3/16 x .964	1 1/16	1/4 x 1.178	
2486156	7/8	3/16 x .964	1 1/8	1/4 x 1.241	
2486161	1	1/4 x 1.114	13/16	1/4 x 1.114	
2486162	1	1/4 x 1.114	1 1/16	1/4 x 1.178	
2486163	1	1/4 x 1.114	1 1/8	1/4 x 1.241	
2486166	1 1/8	1/4 x 1.241	1 1/8	1/4 x 1.241	

UNI-LIFT. BOOTS STEM

SSORIES

S

- Uni-Lift boots are constructed of stitched neoprene coated nylon material to provide maximum protection from abrasive material and other hostile environmental conditions. Uni-Lift boots are available for special severe duty applications, such as weld splatter and high temperature.
- All boots having 60" or more of travel are equipped with permanent tie straps to provide equal weight distribution and controlled extension.
- Horizontal or angled applications require guides for travel greater than 24". These guides will keep the boot centered on the load screw to avoid untimely deterioration. One guide is supplied for each 24" of travel. Boot guides do not require additional load screw length.
- To determine **Extended Screw Length (ESL)** add travel, closed boot height, mounting structure (for inverted applications), boot mounting flanges, and any other required clearances.

• For dimensional information regarding boots for Keyed models, contact factory. Call Factory for Sizing Assistance: (800) 323-9114 or Fax (708) 865-0894.

Material	Temperature Range	Application Comments
Neoprene Coated Nylon	-40° F to 220° F	Good flexibility, resists oils and greases.
Hypalon Coated Polyester	-60° F to 300° F	Good chemical and abrasion resistance.
Silicone Coated Fiberglass	-40° F to 550° F	High temperature.
Aluminized Fiberglass	-40° F to 550° F	High temperature, weld splatter and good abrasion resistance.

MODEL &	BOOT DIA	AMETERS	COLLAR DIM.			BOOT	
SIZE	outside Dia.	inside Dia.	TRANS	TRANSLATING		ROTATING	
M-SERIES			А	В	А	В	
1	5.00	2.00	2.81	0.81	2.81	3.06	
2.5	5.00	2.00	4.06	1.06	4.06	3.06	
5	5.50	2.50	5.94	1.81	5.69	4.06	
10	6.50	3.50	5.94	1.81	5.94	3.00	2 2
15	7.00	4.00	6.19	2.31	6.19	6.56	⊢ ×
20	7.50	4.50	7.06	2.56	7.06	7.06	12
30	8.00	5.00	8.81	3.06	8.81	8.31	7
H-SERIES							" ⊢
1/4	4.00	1.00	0.90	0.56	0.90	1.56	L H
1/2	4.50	1.50	1.06	0.69	1.06	2.06	Ĕ
J-SERIES							
3/4	4.50	1.50	1.19	0.69	1.19	2.31	ġ
1	4.50	1.50	3.19	0.81	3.19	1.56	<u> </u>
2	5.00	2.00	3.69	1.06	3.69	3.06	
5	5.50	2.50	4.56	1.56	4.56	4.06	ISC
10	6.50	3.50	5.56	1.81	5.56	5.06	5
20	7.50	4.50	7.06	2.56	7.06	7.06	
25	8.00	5.00	7.56	2.81	7.56	8.31	ATI
B-SERIES							N N
1	4.50	1.50	3.19	0.81	3.31	2.65	ŏ
2.5	5.00	2.00	3.06	1.06	4.06	3.34	Å Å
5	5.50	2.50	4.56	1.56	5.69	5.00	A PI
10	6.50	3.50	4.25	1.81	5.94	5.00	
20	6.50	3.50	5.69	2.56	7.06	5.47	
30	8.00	5.00	7.37	3.06	8.81	7.47	

Order The Proper Load Screw Length (ESL)/Boot Application

To determine the load screw length (ESL) required when ordering Uni-Lift actuators, extra screw must be included for: mounting structure, traveling nut, boot closed height, boot accessories, etc. Typical areas where extra screw length must be provided are marked with an asterisk (*).

• To calculate closed height of boot, see boot specifications on adjacent page.

Boot Selection for Rotating Design or Double Clevis Applications: Contact Factory.

Boot Accessory Plate/Dimensional Data

Boot Retainer Plate Including Screws (Item #2)							
Uni-Lift	Order	K	L	М	Ν	Screw	
Cap. (ton)	Number					Size	
1/4	2480001†	2 1/4	3/16	.875	1 3/16		
1/2	2480002†	2 3/8	3/16	1.031	1 7/16	6 - 32	
3/4	2480072	2 1/4	3/16	1.031	1 7/16		
1	2480003	3 1/4	3/8	.812	2 5/16		
2 & 2.5	2480004	3 5/8	3/8	1.125	2 1/8		
5	2480005	4 1/2	1/2	1.625	3 5/16	4/4 00	
10 & 15	2480006	5 1/2	1/2	2.250	4 1/16	1/4 - 20	
20	2480007	7	5/8	2.562	5 5/8		
25 & 30	2480008	7 1/2	5/8	2.812	5 3/4		
40 & 50	2480009	9 3/4	1/2	4.320	8		
75 & 100	2480010	14	3/4	6.020	8 1/2	5/16 - 18	

† Retainer plate mounts to housing when using top plate.

UNI-LIFT SHAFTING & DRIVING

LINEAR MOTION 800-323-9114

ENGINEERING GUIDE

There may be applications where driving direct shaft connection to the motor or reducer is impractical. Examples include:

When the required input speed cannot be obtained using a gear reducer; when the design economy dictates elimination of geared speed reducers; or when the configuration of surrounding structure prohibits use of mitre gear boxes with connecting shafts between units.

In all these cases, a single Uni-Lift or Uni-Lift system may be operated by sprocket and chain drive as shown in the figure below.

There is a limit for overhung shaft loads applied to Uni-Lift input shafts. To find the overhung shaft load applied to the input shaft, divide the required input operating torque by the pitch radius of the driven sprocket. This load should not exceed the rating in Table A.

Typical Sprocket and Chain Drive Application

Notes:

- To reduce the overhung load effect, use a driven sprocket with a larger radius.
- Uni-Lift does not supply overhung drive components.

Table A - Overhung Load Capacity

Capacity	Shaft		Shaft RPM					
Tons	Dia.	0-50	115	345	600	900	1140	1725
	(In.)	ľ	Max. O	verhun	g Shaf	t Load	l (Lbs)	
3/4	3/8	30	25	23	20	15	15	10
1	7/16	80	70	65	50	40	35	30
2	5/8	100	95	80	70	55	40	35
5	3/4	105	100	95	85	72	60	50
10	1	240	230	210	172	133	95	65
20	1 1/8	295	275	235	195	155	115	80
30	1 1/8	280	260	245	200	160	120	85
50	1 3/8	465	450	375	325	200	160	
100	1 3/4	670	627	585	500	400		

Overhung load limits shown are based upon load applied at 1/2 the Uni-Lift shaft keyseat.

Specifying Shafting

Selection of the smallest recommended shaft diameter gives the system more shock absorbing capability, which greatly improves the life of geared components.

Shaft torque ratings in Table B are based upon torsional deflection of approximately 0.5 DEG/FT during operation, and provide a shear strength safety factor of over 3:1 based on C.R.S. 1018.

Formula to calculate torsional deflection of shafting per linear foot:

$$a = \frac{.0006(Ts_2)}{D^4}$$

a = Angle of Torsional Deflection (DEG/FT)

Ts₂ = Start Up Torque Transmitted (LB-IN)

D = Shaft Diameter (IN)

NOTE: No more than 0.75 DEG/FT should be allowed using effective starting torque (Static Torque) to be transmitted.

Table B Shaft Selection

Shaft	Shaft Torque
Dia.	Rating
(In.)	(Lb.In.)
3/8	15
7/16	30
1/2	50
5/8	125
3/4	260
7/8	480
1	820
1 1/8	1300
1 1/4	2000
1 3/8	2900
1 1/2	4100
1 5/8	5700
1 3/4	7600
2	13100
2 3/16	19100

Pillow Block Spacing

Shaft Speed (RPM)							
0-230	345	690	1140	1725			
* Ma	ax. Pillo	w Spa	acing (ln.)			
56	56	46	36	29			
62	62	50	38	31			
68	68	53	41	33			
79	79	59	46	37			
89	89	64	50	41			
98	98	70	54	44			
107	105	75	58	47			
116	111	79	61	50			
125	117	83	65	53			
133	123	87	68	55			
141	129	91	71	58			
148	134	95	74	60			
156	139	98	76	62			
170	149	105	82	66			
181	155	110	86	70			

* Distance from end of shaft to nearest pillow block should be approximately 20% of the value shown. A minimum of 2 pillow blocks should be used if shaft's overall length exceeds 60% of the value shown.

One jack system efficiency = 99%

e₂ Helical Gear Reducer 97% EFF

UNI-LIFT BOO-323-9114 ENG LOAD SCREW KEY TORQUE GUI

ENGINEERING GUIDE

Preventing Load Screw Rotation

Rotation of load screw or traveling nut must be prevented in order to produce travel (linear motion).

Key torque is the amount of torque measured in inch pounds that must be overcome to prevent load screw rotation. There are three general methods used to overcome key torque:

■ Use of external guiding of the load as shown in the illustration Fig. K. This method is highly recommended for all applications involving side thrust or column buckle and is mandatory for horizontal applications.

- Configure a system using two or more actuators attached to the load. (A rigid structure bolted to more than one Uni-Lift will not rotate.)
- Using a keyed load screw. (Keyway full length of Acme Screw) This form of internal guiding is the least preferred method of preventing load screw rotation. Should it become necessary to have a keyed load screw, the load should be no more than 25% of rated capacity in order to minimize key friction problems. Contact the factory for assistance in selecting the properly sized keyed Uni-Lift actuator.

Key torque for all Uni-Lift models is given in Table below.

Load Screw Key Torque (Output Torque at Full Load)

Capacity	Unit Key
(Tons)	Torque
	(lb. in.)
1/4	28
1/2	65
3/4-20	97
3/4-40	127
1	184
2/2.5	444
5	1,608
10	3,617
20	10,423
30	16,789
50	41,822
100	112,930

*For reduced loads, key torque is reduced proportionately. Multiply table values by load proportion factor.

F= Actual load (lbs.) Rated capacity (lbs.)

Important: Guides must be sized to prevent bending or deflection, and aligned in true position with the jack and the load screw. Note: If more than one unit is attached to a common structure, the tendency to rotate is resisted by reaction in the structure instead of the guides.

ENGINEERING GUIDE

UNI-LIFT SAFETY & INSTALLATION

Uni-Lift actuators have been designed to provide long life with an adequate safety margin to prevent loss of control of the load being moved or positioned. The following conditions must be met before installation begins:

- A Uni-Lift has been selected with capacity and rating greater than the load.
- A method of preventing screw rotation is used so translation will occur. See "Key Torque" table in catalog for strength requirements.
- Mechanical travel stops as part of the structure and travel limit controls are available to prevent ejection of the load screw or retraction into the housing.
- A check that the maximum compressive capability hasn't been exceeded. Column buckle calculations available in catalog.
- A minimum of Grade 5 bolts have been selected for mounting of the Uni-Lift.
- Check that rated input speeds of the Uni-Lift will not be exceeded. Verify in Uni-Lift catalog.
- Check that mounting structure has sufficient strength to support the load, and is rigid enough to prevent deflection or distortion of supporting members.
- Use brakes when vibration present.

Check Safety Codes and Specifications

Safety codes are for your protection. Uni-Lift recommends compliance with all safety codes, applicable building codes, elevator codes, AISC Steel Construction specifications, and others. OSHA Title 29, Chapter 1910-219, and ANSI B15.1 Safety Code for Mechanical Power Transmission Apparatus are to be followed. **Use of Uni-Lifts to move human cargo is not recommended, consult the factory.**

When in doubt about any of these conditions being met, contact **Templeton**, **Kenly & Co.**, **Inc.** for recommendations.

The foundations of Uni-Lift mounting are critical to insure alignment. Mount the actuator and check that the axis of the load screw is parallel to the movement of the load and centered with respect to the load. Shim under the mounting base to achieve this if needed. Both eccentric loading and/or side loading will cause premature wear and possible bending and failure of the Uni-Lift. Once the alignment is correct, hand tighten the mounting bolts.

Next align all system power transmission components. Insure drive shafts are aligned with the Uni-Lift input shaft(s). Alignment of all components is critical for proper operation.

As an alignment aid - use of laser transits are recommended.

Verify that the Uni-Lift turns freely by hand, and that all other components are in alignment, then tighten the mounting fasteners and attach the load to the Uni-Lift. Check to insure all equipment is properly lubricated, rotating parts are protected and all personnel are clear of danger.

Finally the load screw should be lubricated with a light film of grease and the Uni-Lift housing checked to be sure that it is properly filled with grease.

LINEAR MOTION
800-323-9114ENGINEERINGLUBRICATION & MAINTENANCEGUIDE

MAINTENANCE

- 1. **External Cleaning:** The Uni-Lift should be wiped down and visually inspected for signs of wear and/or abuse each month. The load screw should be coated with a light film of grease. The housing grease should be topped off using the grease fittings provided. Check the input shaft end plate screws and the housing cap set screws and mounting bolts. Retighten if required.
- 2. Periodic Inspection: Every 6 months a measurement of linear backlash should be made. WARNING: Backlash in excess of 50% of the acme thread thickness may result in thread shear failure, causing the load to drop suddenly.
- 3. Alignment: Along with periodic inspection, check the alignment of the Uni-Lift load screw to the load. Misalignment will cause premature wear and possible failure. The load should be centered on the axis of the load screw and motion should be parallel to the axis of the load screw. The power output shafting must be aligned with respect to the jack input shaft. Binding during rotation will cause premature wear. After the Uni-Lifts, shafting, mitre boxes, and gear reducers are coupled together in a system, it should be possible to rotate the shafts to fully extend the unloaded jacks by hand.

LUBRICATION

- 1. **Up to 180° F Operation:** Uni-Lifts are lubricated by a grease gun through the fitting or fittings outside the side of the worm gear housing. Use Texaco "Multifak EP2" industrial grease. If another brand "EP2" is used, it should have oil viscosity of 840 to 890 SUS at 100° F, and 76 to 84 at 210° F.
- 2. Up to 400° F Operation: Use a "Lubripalte 630-AA" grease for elevated temperatures. Please be aware of reduced seal life at elevated temperatures.
- 3. **Special Requirements:** USDA approved grease for food industry applications or grease for extremely low temperature (-100° F) applications, and other lubricants are available. Contact Uni-Lift Division of Templeton, Kenly & Co., Inc.

EMERGENCY STOP NUT

Although recommended as a safety precaution, emergency stop nuts are intended for use only as secondary stops in case of overtravel emergencies. Gear damage may result when used as primary travel limit unless other means of overload protection are incorporated into the system. It is important that positive stops or emergency stop nuts be positioned so that stop contact for all units will occur simultaneously to equally distribute the system stall load should overtravel occur.

LINEAR MOTION

APPLICATION INFORMATION AND ORDER DATA CHECKLIST

Complete the information from below to identify the application data required to perform jack sizing and system configuration.

No. of lifting jacks per system
Electrical power available: Voltage Phase
Ambient Temp. (specify range)
Other unusual conditions (describe)
Number of operating cycles: Per hour Per day Per week
Braking distance desired for Ball Screw applications: inches.
Life expectancy: years Personnel support: Yes U No U
Make a preliminary jack selection based on the application data. Then complete the order information form below. Refer to the actuator part number matrix on fold out of the catalog. Jack model:
Name Date
Company Name
Phone No Fax No E-Mail Address

Address		
City	State	Zip

Division of Templeton, Kenly & Co., Inc. 2525 Gardner Road • Broadview, IL 60155 Telephone: (800) 323-9114 or Fax: (708) 865-0894 or www.tkunilift.com

ACTUATOR PART NUMBER MATRIX

Last Two Characters - Limit Switch Ratio (10, 20 & 40)

SIMPLEX HYDRAULIC & MECHANICAL PRODUCTS

- Rams with capacities from 5 to 1,000 tons.
- Low Profile Cylinders and Flat Jacks with closed heights as little as 1 11/16".
- The world's best Lock Nut Cylinders.
- Hydraulic & Mechanical Spreaders with up to 10 ton capacities.
- For industrial & maintenance applications such as bending, holding, spreading and hundreds more.

- High performance Suc-O-Matic Pumps that suck down load return cylinders.
- Permanent Magnet Motor Pumps that run on as little as 60 VAC.
- High tech valving for smooth and safe lifting and lowering.
- High flow Hand Pumps, with low back saving handle efforts.

CALL FOR A FREE SIMPLEX GENERAL LINE CATALOG SC103A

(800) 323-9114

- H-Frame Presses from 10 through 200 tons.
- Double pinned & heavy duty welded construction for operator safety.
- Wide variety of electric, air or manual power sources.

MACHINE SCREW

ACTUATORS

UNITED STATES HOME OFFICE

2525 Gardner Road Broadview, IL 60153 Phone: (708) 865-1500 Fax: (708) 865-0894 Toll Free: (800) 323-9114 Email: sales@tksimplex.net www.tkunilift.com

ASIA & PACIFIC RIM Phone: +612-9736-1619 Fax: +612-9736-2170 Email: fcimenti@tksimplex.net CANADAIAN WAREHOUSE 637 McCaffrey St. Laurent, PQ H4T1N3 Phone: (514)731-4893 Fax: (514) 731-7457 Toll Free: (800) 840-1196 Email: info@ips-serv.com

MEXICO Mexico City Phone: +52-55-2163 0630 Fax: +52-55-2163 0636 Monterey Phone/Fax: +52-81-8135 8207 EUROPEAN WAREHOUSE

Economiestraat 39, Unit 8 Hoensbroek 6433 • Netherlands Phone: +31-45-5234545 Fax: +31-45-5234556 Email: info@tksimplex.nl www.tksimplex.nl

MIDDLE EAST

Phone: +32-10-223322 Fax: +32-10-229444 omourrah@tksimplex.net

SOUTH AFRICA Phone: +27-11-908-1721 Fax: +27-11-908-5806

Distributed By:

Printed in USA

UC205